<!--td {border: 1px solid #cccccc;}br {mso-data-placement:same-cell;}-->A reflected cross-site scripting (XSS) vulnerability in the Liferay Portal 7.4.3.132, and Liferay DXP 2025.Q1.0 through 2025.Q1.15, 2025.Q2.0 through 2025.Q2.2 and 2024.Q1.13 through 2024.Q1.19 allows a remote authenticated user to inject JavaScript code via snippet parameter.
A Stored cross-site scripting vulnerability in the Liferay Portal 7.4.0 t through 7.4.3.132, and Liferay DXP 2025.Q2.0, 2025.Q1.0 through 2025.Q1.13, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.0 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.17 and 7.4 GA through update 92 allows an remote authenticated attacker to inject JavaScript into the _com_liferay_layout_admin_web_portlet_GroupPagesPortlet_type parameter.
SQL Injection in the listdomains function in Easy Hosting Control Panel (EHCP) 20.04.1.b allows authenticated attackers to access or manipulate database contents via the arananalan POST parameter.
The GiveWP β Donation Plugin and Fundraising Platform plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the give_update_payment_status() function in all versions up to, and including, 4.5.0. This makes it possible for authenticated attackers, with GiveWP Worker-level access and above, to update donations statuses. This ability is not present in the user interface.
A weakness has been identified in elunez eladmin up to 2.7. This affects the function exportUser. This manipulation causes csv injection. The attack may be initiated remotely. The exploit has been made available to the public and could be exploited.
A reflected cross-site scripting (XSS) vulnerability in the Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q2.0 through 2025.Q2.2, 2025.Q1.0 through 2025.Q1.14, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.1 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.18 and 7.4 GA through update 92 allows a remote authenticated attacker to inject JavaScript code via _com_liferay_dynamic_data_mapping_web_portlet_DDMPortlet_definition parameter.
A security flaw has been discovered in elunez eladmin up to 2.7. Affected by this issue is some unknown functionality of the file /auth/info. The manipulation results in information disclosure. The attack can be launched remotely. The exploit has been released to the public and may be exploited.
A reflected cross-site scripting (XSS) vulnerability in the Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q2.0 through 2025.Q2.2, 2025.Q1.0 through 2025.Q1.14, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.0 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.18 and 7.4 GA through update 92 allows a remote authenticated attacker to inject JavaScript code via _com_liferay_dynamic_data_mapping_web_portlet_DDMPortlet_portletNamespace and _com_liferay_dynamic_data_mapping_web_portlet_DDMPortlet_namespace parameter.
A vulnerability was found in the Cryostat HTTP API. Cryostat's HTTP API binds to all network interfaces, allowing possible external visibility and access to the API port if Network Policies are disabled, allowing an unauthenticated, malicious attacker to jeopardize the environment.
Insufficient CSRF protection for omni-administrator users in Liferay Portal 7.0.0 through 7.4.3.119, and Liferay DXP 2024.Q1.1 through 2024.Q1.6, 2023.Q4.0 through 2023.Q4.9, 2023.Q3.1 through 2023.Q3.9, 7.4 GA through update 92, 7.3 GA through update 36, and older unsupported versions allows attackers to execute Cross-Site Request Forgery
IBM QRadar SOAR Plugin App 1.0.0 through 5.6.0 could allow a remote attacker to traverse directories on the system. An attacker could send a specially crafted URL request containing "dot dot" sequences (/../) to view arbitrary files on the system.
Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q1.0 through 2025.Q1.1, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.14 and 7.4 GA through update 92 allows remote unauthenticated users (guests) to upload files via the form attachment field without proper validation, enabling extension obfuscation and bypassing MIME type checks.
Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q1.0 through 2025.Q1.1, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.14 and 7.4 GA through update 92 allows unauthenticated users (guests) to access via URL files uploaded in the form and stored in document_library
A reflected cross-site scripting (XSS) vulnerability in the Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q1.0 through 2025.Q1.3, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.14 and 7.4 GA through update 92 allows an remote non-authenticated attacker to inject JavaScript in web content for friendly urls.
A reflected cross-site scripting (XSS) vulnerability in the Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q1.0 through 2025.Q1.3, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.14 and 7.4 GA through update 92 allows an remote authenticated attacker to inject JavaScrip in the _com_liferay_users_admin_web_portlet_UsersAdminPortlet_assetTagNames parameter
Information disclosure vulnerability in error handling in MiR software prior to version 3.0.0 allows unauthenticated attackers to view detailed error information, such as file paths and other data, via access to verbose error pages.
MiR software versions prior to version 3.0.0 have insufficient authorization controls when creating text notes,
allowing low-privilege users to create notes which are intended only for administrative users.
Stored cross-site scripting (XSS) in the web interface of MiR software versions prior to 3.0.0 on MiR Robots and MiR Fleet allows execution of arbitrary JavaScript code in a victimβs browser
A stored DOM-based Cross-Site Scripting (XSS) vulnerability in Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q2.0 through 2025.Q2.5, 2025.Q1.0 through 2025.Q1.15, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.19 and 7.4 GA through update 92 exists in the Asset Publisher configuration UI within the Source.js module. This vulnerability allows attackers to inject arbitrary JavaScript via DDM structure field labels which are then inserted into the DOM using innerHTML without proper encoding.
Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q1.0 through 2025.Q1.5, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.15 and 7.4 GA through update 92 allows any authenticated remote user to view other calendars by allowing them to enumerate the names of other users, given an attacker the possibility to send phishing to these users.
Astro is a web framework for content-driven websites. In versions of astro before 5.13.2 and 4.16.18, the image optimization endpoint in projects deployed with on-demand rendering allows images from unauthorized third-party domains to be served. On-demand rendered sites built with Astro include an /_image endpoint which returns optimized versions of images. A bug in impacted versions of astro allows an attacker to bypass the third-party domain restrictions by using a protocol-relative URL as the image source, e.g. /_image?href=//example.com/image.png. This vulnerability is fixed in 5.13.2 and 4.16.18.
A CSRF vulnerability in Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q2.0 through 2025.Q2.7, 2025.Q1.0 through 2025.Q1.14, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.19 and 7.4 GA through update 92 allows remote attackers to performs cross-origin request on behalf of the authenticated user via the endpoint parameter.
A reflected cross-site scripting (XSS) vulnerability in the Liferay Portal 7.4.3.132, and Liferay DXP 2025.Q2.0 through 2025.Q2.8 and 2025.Q1.0 through 2025.Q1.15 allows a remote authenticated user to inject JavaScript code via _com_liferay_journal_web_portlet_JournalPortlet_backURL parameter.
A vulnerability was determined in Wavlink WL-NU516U1 M16U1_V240425. This impacts the function sub_4032E4 of the file /cgi-bin/wireless.cgi. This manipulation of the argument Guest_ssid causes command injection. The attack is possible to be carried out remotely. The exploit has been publicly disclosed and may be utilized.
Mermaid is a JavaScript based diagramming and charting tool that uses Markdown-inspired text definitions and a renderer to create and modify complex diagrams. In the default configuration of mermaid 11.9.0 and earlier, user supplied input for architecture diagram icons is passed to the d3 html() method, creating a sink for cross site scripting. This vulnerability is fixed in 11.10.0.
In the smartLibrary component of the HRForecast Suite 0.4.3, a SQL injection vulnerability was discovered in the valueKey parameter. This flaw enables any authenticated user to execute arbitrary SQL queries, via crafted payloads to valueKey to the api/smartlibrary/v2/en/dictionaries/options/lookup endpoint.
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: cancle set bad inode after removing name fails
The reproducer uses a file0 on a ntfs3 file system with a corrupted i_link.
When renaming, the file0's inode is marked as a bad inode because the file
name cannot be deleted.
The underlying bug is that make_bad_inode() is called on a live inode.
In some cases it's "icache lookup finds a normal inode, d_splice_alias()
is called to attach it to dentry, while another thread decides to call
make_bad_inode() on it - that would evict it from icache, but we'd already
found it there earlier".
In some it's outright "we have an inode attached to dentry - that's how we
got it in the first place; let's call make_bad_inode() on it just for shits
and giggles".
In the Linux kernel, the following vulnerability has been resolved:
staging: gpib: fix unset padding field copy back to userspace
The introduction of a padding field in the gpib_board_info_ioctl is
showing up as initialized data on the stack frame being copyied back
to userspace in function board_info_ioctl. The simplest fix is to
initialize the entire struct to zero to ensure all unassigned padding
fields are zero'd before being copied back to userspace.
In the Linux kernel, the following vulnerability has been resolved:
bpf: handle jset (if a & b ...) as a jump in CFG computation
BPF_JSET is a conditional jump and currently verifier.c:can_jump()
does not know about that. This can lead to incorrect live registers
and SCC computation.
E.g. in the following example:
1: r0 = 1;
2: r2 = 2;
3: if r1 & 0x7 goto +1;
4: exit;
5: r0 = r2;
6: exit;
W/o this fix insn_successors(3) will return only (4), a jump to (5)
would be missed and r2 won't be marked as alive at (3).
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Avoid accessing uninitialized arvif->ar during beacon miss
During beacon miss handling, ath12k driver iterates over active virtual
interfaces (vifs) and attempts to access the radio object (ar) via
arvif->deflink->ar.
However, after commit aa80f12f3bed ("wifi: ath12k: defer vdev creation for
MLO"), arvif is linked to a radio only after vdev creation, typically when
a channel is assigned or a scan is requested.
For P2P capable devices, a default P2P interface is created by
wpa_supplicant along with regular station interfaces, these serve as dummy
interfaces for P2P-capable stations, lack an associated netdev and initiate
frequent scans to discover neighbor p2p devices. When a scan is initiated
on such P2P vifs, driver selects destination radio (ar) based on scan
frequency, creates a scan vdev, and attaches arvif to the radio. Once the
scan completes or is aborted, the scan vdev is deleted, detaching arvif
from the radio and leaving arvif->ar uninitialized.
While handling beacon miss for station interfaces, P2P interface is also
encountered in the vif iteration and ath12k_mac_handle_beacon_miss_iter()
tries to dereference the uninitialized arvif->deflink->ar.
Fix this by verifying that vdev is created for the arvif before accessing
its ar during beacon miss handling and similar vif iterator callbacks.
==========================================================================
wlp6s0: detected beacon loss from AP (missed 7 beacons) - probing
KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
CPU: 5 UID: 0 PID: 0 Comm: swapper/5 Not tainted 6.16.0-rc1-wt-ath+ #2 PREEMPT(full)
RIP: 0010:ath12k_mac_handle_beacon_miss_iter+0xb5/0x1a0 [ath12k]
Call Trace:
__iterate_interfaces+0x11a/0x410 [mac80211]
ieee80211_iterate_active_interfaces_atomic+0x61/0x140 [mac80211]
ath12k_mac_handle_beacon_miss+0xa1/0xf0 [ath12k]
ath12k_roam_event+0x393/0x560 [ath12k]
ath12k_wmi_op_rx+0x1486/0x28c0 [ath12k]
ath12k_htc_process_trailer.isra.0+0x2fb/0x620 [ath12k]
ath12k_htc_rx_completion_handler+0x448/0x830 [ath12k]
ath12k_ce_recv_process_cb+0x549/0x9e0 [ath12k]
ath12k_ce_per_engine_service+0xbe/0xf0 [ath12k]
ath12k_pci_ce_workqueue+0x69/0x120 [ath12k]
process_one_work+0xe3a/0x1430
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00284.1-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Pass ab pointer directly to ath12k_dp_tx_get_encap_type()
In ath12k_dp_tx_get_encap_type(), the arvif parameter is only used to
retrieve the ab pointer. In vdev delete sequence the arvif->ar could
become NULL and that would trigger kernel panic.
Since the caller ath12k_dp_tx() already has a valid ab pointer, pass it
directly to avoid panic and unnecessary dereferencing.
PC points to "ath12k_dp_tx+0x228/0x988 [ath12k]"
LR points to "ath12k_dp_tx+0xc8/0x988 [ath12k]".
The Backtrace obtained is as follows:
ath12k_dp_tx+0x228/0x988 [ath12k]
ath12k_mac_tx_check_max_limit+0x608/0x920 [ath12k]
ieee80211_process_measurement_req+0x320/0x348 [mac80211]
ieee80211_tx_dequeue+0x9ac/0x1518 [mac80211]
ieee80211_tx_dequeue+0xb14/0x1518 [mac80211]
ieee80211_tx_prepare_skb+0x224/0x254 [mac80211]
ieee80211_xmit+0xec/0x100 [mac80211]
__ieee80211_subif_start_xmit+0xc50/0xf40 [mac80211]
ieee80211_subif_start_xmit+0x2e8/0x308 [mac80211]
netdev_start_xmit+0x150/0x18c
dev_hard_start_xmit+0x74/0xc0
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7925: fix off by one in mt7925_mcu_hw_scan()
The ssid->ssids[] and sreq->ssids[] arrays have MT7925_RNR_SCAN_MAX_BSSIDS
elements so this >= needs to be > to prevent an out of bounds access.
In the Linux kernel, the following vulnerability has been resolved:
drm/rockchip: vop2: fail cleanly if missing a primary plane for a video-port
Each window of a vop2 is usable by a specific set of video ports, so while
binding the vop2, we look through the list of available windows trying to
find one designated as primary-plane and usable by that specific port.
The code later wants to use drm_crtc_init_with_planes with that found
primary plane, but nothing has checked so far if a primary plane was
actually found.
For whatever reason, the rk3576 vp2 does not have a usable primary window
(if vp0 is also in use) which brought the issue to light and ended in a
null-pointer dereference further down.
As we expect a primary-plane to exist for a video-port, add a check at
the end of the window-iteration and fail probing if none was found.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Reject narrower access to pointer ctx fields
The following BPF program, simplified from a syzkaller repro, causes a
kernel warning:
r0 = *(u8 *)(r1 + 169);
exit;
With pointer field sk being at offset 168 in __sk_buff. This access is
detected as a narrower read in bpf_skb_is_valid_access because it
doesn't match offsetof(struct __sk_buff, sk). It is therefore allowed
and later proceeds to bpf_convert_ctx_access. Note that for the
"is_narrower_load" case in the convert_ctx_accesses(), the insn->off
is aligned, so the cnt may not be 0 because it matches the
offsetof(struct __sk_buff, sk) in the bpf_convert_ctx_access. However,
the target_size stays 0 and the verifier errors with a kernel warning:
verifier bug: error during ctx access conversion(1)
This patch fixes that to return a proper "invalid bpf_context access
off=X size=Y" error on the load instruction.
The same issue affects multiple other fields in context structures that
allow narrow access. Some other non-affected fields (for sk_msg,
sk_lookup, and sockopt) were also changed to use bpf_ctx_range_ptr for
consistency.
Note this syzkaller crash was reported in the "Closes" link below, which
used to be about a different bug, fixed in
commit fce7bd8e385a ("bpf/verifier: Handle BPF_LOAD_ACQ instructions
in insn_def_regno()"). Because syzbot somehow confused the two bugs,
the new crash and repro didn't get reported to the mailing list.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Remove skb secpath if xfrm state is not found
Hardware returns a unique identifier for a decrypted packet's xfrm
state, this state is looked up in an xarray. However, the state might
have been freed by the time of this lookup.
Currently, if the state is not found, only a counter is incremented.
The secpath (sp) extension on the skb is not removed, resulting in
sp->len becoming 0.
Subsequently, functions like __xfrm_policy_check() attempt to access
fields such as xfrm_input_state(skb)->xso.type (which dereferences
sp->xvec[sp->len - 1]) without first validating sp->len. This leads to
a crash when dereferencing an invalid state pointer.
This patch prevents the crash by explicitly removing the secpath
extension from the skb if the xfrm state is not found after hardware
decryption. This ensures downstream functions do not operate on a
zero-length secpath.
BUG: unable to handle page fault for address: ffffffff000002c8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 282e067 P4D 282e067 PUD 0
Oops: Oops: 0000 [#1] SMP
CPU: 12 UID: 0 PID: 0 Comm: swapper/12 Not tainted 6.15.0-rc7_for_upstream_min_debug_2025_05_27_22_44 #1 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:__xfrm_policy_check+0x61a/0xa30
Code: b6 77 7f 83 e6 02 74 14 4d 8b af d8 00 00 00 41 0f b6 45 05 c1 e0 03 48 98 49 01 c5 41 8b 45 00 83 e8 01 48 98 49 8b 44 c5 10 <0f> b6 80 c8 02 00 00 83 e0 0c 3c 04 0f 84 0c 02 00 00 31 ff 80 fa
RSP: 0018:ffff88885fb04918 EFLAGS: 00010297
RAX: ffffffff00000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000002 RDI: 0000000000000000
RBP: ffffffff8311af80 R08: 0000000000000020 R09: 00000000c2eda353
R10: ffff88812be2bbc8 R11: 000000001faab533 R12: ffff88885fb049c8
R13: ffff88812be2bbc8 R14: 0000000000000000 R15: ffff88811896ae00
FS: 0000000000000000(0000) GS:ffff8888dca82000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffff000002c8 CR3: 0000000243050002 CR4: 0000000000372eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
? try_to_wake_up+0x108/0x4c0
? udp4_lib_lookup2+0xbe/0x150
? udp_lib_lport_inuse+0x100/0x100
? __udp4_lib_lookup+0x2b0/0x410
__xfrm_policy_check2.constprop.0+0x11e/0x130
udp_queue_rcv_one_skb+0x1d/0x530
udp_unicast_rcv_skb+0x76/0x90
__udp4_lib_rcv+0xa64/0xe90
ip_protocol_deliver_rcu+0x20/0x130
ip_local_deliver_finish+0x75/0xa0
ip_local_deliver+0xc1/0xd0
? ip_protocol_deliver_rcu+0x130/0x130
ip_sublist_rcv+0x1f9/0x240
? ip_rcv_finish_core+0x430/0x430
ip_list_rcv+0xfc/0x130
__netif_receive_skb_list_core+0x181/0x1e0
netif_receive_skb_list_internal+0x200/0x360
? mlx5e_build_rx_skb+0x1bc/0xda0 [mlx5_core]
gro_receive_skb+0xfd/0x210
mlx5e_handle_rx_cqe_mpwrq+0x141/0x280 [mlx5_core]
mlx5e_poll_rx_cq+0xcc/0x8e0 [mlx5_core]
? mlx5e_handle_rx_dim+0x91/0xd0 [mlx5_core]
mlx5e_napi_poll+0x114/0xab0 [mlx5_core]
__napi_poll+0x25/0x170
net_rx_action+0x32d/0x3a0
? mlx5_eq_comp_int+0x8d/0x280 [mlx5_core]
? notifier_call_chain+0x33/0xa0
handle_softirqs+0xda/0x250
irq_exit_rcu+0x6d/0xc0
common_interrupt+0x81/0xa0
</IRQ>
In the Linux kernel, the following vulnerability has been resolved:
bpf, arm64: Fix fp initialization for exception boundary
In the ARM64 BPF JIT when prog->aux->exception_boundary is set for a BPF
program, find_used_callee_regs() is not called because for a program
acting as exception boundary, all callee saved registers are saved.
find_used_callee_regs() sets `ctx->fp_used = true;` when it sees FP
being used in any of the instructions.
For programs acting as exception boundary, ctx->fp_used remains false
even if frame pointer is used by the program and therefore, FP is not
set-up for such programs in the prologue. This can cause the kernel to
crash due to a pagefault.
Fix it by setting ctx->fp_used = true for exception boundary programs as
fp is always saved in such programs.
In the Linux kernel, the following vulnerability has been resolved:
spi: cs42l43: Property entry should be a null-terminated array
The software node does not specify a count of property entries, so the
array must be null-terminated.
When unterminated, this can lead to a fault in the downstream cs35l56
amplifier driver, because the node parse walks off the end of the
array into unknown memory.
In the Linux kernel, the following vulnerability has been resolved:
sunrpc: fix client side handling of tls alerts
A security exploit was discovered in NFS over TLS in tls_alert_recv
due to its assumption that there is valid data in the msghdr's
iterator's kvec.
Instead, this patch proposes the rework how control messages are
setup and used by sock_recvmsg().
If no control message structure is setup, kTLS layer will read and
process TLS data record types. As soon as it encounters a TLS control
message, it would return an error. At that point, NFS can setup a kvec
backed control buffer and read in the control message such as a TLS
alert. Scott found that a msg iterator can advance the kvec pointer
as a part of the copy process thus we need to revert the iterator
before calling into the tls_alert_recv.
In the Linux kernel, the following vulnerability has been resolved:
nfsd: avoid ref leak in nfsd_open_local_fh()
If two calls to nfsd_open_local_fh() race and both successfully call
nfsd_file_acquire_local(), they will both get an extra reference to the
net to accompany the file reference stored in *pnf.
One of them will fail to store (using xchg()) the file reference in
*pnf and will drop that reference but WON'T drop the accompanying
reference to the net. This leak means that when the nfs server is shut
down it will hang in nfsd_shutdown_net() waiting for
&nn->nfsd_net_free_done.
This patch adds the missing nfsd_net_put().
In the Linux kernel, the following vulnerability has been resolved:
perf/core: Handle buffer mapping fail correctly in perf_mmap()
After successful allocation of a buffer or a successful attachment to an
existing buffer perf_mmap() tries to map the buffer read only into the page
table. If that fails, the already set up page table entries are zapped, but
the other perf specific side effects of that failure are not handled. The
calling code just cleans up the VMA and does not invoke perf_mmap_close().
This leaks reference counts, corrupts user->vm accounting and also results
in an unbalanced invocation of event::event_mapped().
Cure this by moving the event::event_mapped() invocation before the
map_range() call so that on map_range() failure perf_mmap_close() can be
invoked without causing an unbalanced event::event_unmapped() call.
perf_mmap_close() undoes the reference counts and eventually frees buffers.
In the Linux kernel, the following vulnerability has been resolved:
platform/x86/intel/pmt: fix a crashlog NULL pointer access
Usage of the intel_pmt_read() for binary sysfs, requires a pcidev. The
current use of the endpoint value is only valid for telemetry endpoint
usage.
Without the ep, the crashlog usage causes the following NULL pointer
exception:
BUG: kernel NULL pointer dereference, address: 0000000000000000
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:intel_pmt_read+0x3b/0x70 [pmt_class]
Code:
Call Trace:
<TASK>
? sysfs_kf_bin_read+0xc0/0xe0
kernfs_fop_read_iter+0xac/0x1a0
vfs_read+0x26d/0x350
ksys_read+0x6b/0xe0
__x64_sys_read+0x1d/0x30
x64_sys_call+0x1bc8/0x1d70
do_syscall_64+0x6d/0x110
Augment struct intel_pmt_entry with a pointer to the pcidev to avoid
the NULL pointer exception.
In the Linux kernel, the following vulnerability has been resolved:
HID: apple: validate feature-report field count to prevent NULL pointer dereference
A malicious HID device with quirk APPLE_MAGIC_BACKLIGHT can trigger a NULL
pointer dereference whilst the power feature-report is toggled and sent to
the device in apple_magic_backlight_report_set(). The power feature-report
is expected to have two data fields, but if the descriptor declares one
field then accessing field[1] and dereferencing it in
apple_magic_backlight_report_set() becomes invalid
since field[1] will be NULL.
An example of a minimal descriptor which can cause the crash is something
like the following where the report with ID 3 (power report) only
references a single 1-byte field. When hid core parses the descriptor it
will encounter the final feature tag, allocate a hid_report (all members
of field[] will be zeroed out), create field structure and populate it,
increasing the maxfield to 1. The subsequent field[1] access and
dereference causes the crash.
Usage Page (Vendor Defined 0xFF00)
Usage (0x0F)
Collection (Application)
Report ID (1)
Usage (0x01)
Logical Minimum (0)
Logical Maximum (255)
Report Size (8)
Report Count (1)
Feature (Data,Var,Abs)
Usage (0x02)
Logical Maximum (32767)
Report Size (16)
Report Count (1)
Feature (Data,Var,Abs)
Report ID (3)
Usage (0x03)
Logical Minimum (0)
Logical Maximum (1)
Report Size (8)
Report Count (1)
Feature (Data,Var,Abs)
End Collection
Here we see the KASAN splat when the kernel dereferences the
NULL pointer and crashes:
[ 15.164723] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000006: 0000 [#1] SMP KASAN NOPTI
[ 15.165691] KASAN: null-ptr-deref in range [0x0000000000000030-0x0000000000000037]
[ 15.165691] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.15.0 #31 PREEMPT(voluntary)
[ 15.165691] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 15.165691] RIP: 0010:apple_magic_backlight_report_set+0xbf/0x210
[ 15.165691] Call Trace:
[ 15.165691] <TASK>
[ 15.165691] apple_probe+0x571/0xa20
[ 15.165691] hid_device_probe+0x2e2/0x6f0
[ 15.165691] really_probe+0x1ca/0x5c0
[ 15.165691] __driver_probe_device+0x24f/0x310
[ 15.165691] driver_probe_device+0x4a/0xd0
[ 15.165691] __device_attach_driver+0x169/0x220
[ 15.165691] bus_for_each_drv+0x118/0x1b0
[ 15.165691] __device_attach+0x1d5/0x380
[ 15.165691] device_initial_probe+0x12/0x20
[ 15.165691] bus_probe_device+0x13d/0x180
[ 15.165691] device_add+0xd87/0x1510
[...]
To fix this issue we should validate the number of fields that the
backlight and power reports have and if they do not have the required
number of fields then bail.
EzGED3 3.5.0 contains an unauthenticated arbitrary file read vulnerability due to improper access control and insufficient input validation in a script exposed via the web interface. A remote attacker can supply a crafted path parameter to a PHP script to read arbitrary files from the filesystem. The script lacks both authentication checks and secure path handling, allowing directory traversal attacks (e.g., ../../../) to access sensitive files such as configuration files, database dumps, source code, and password reset tokens. If phpMyAdmin is exposed, extracted credentials can be used for direct administrative access. In environments without such tools, attacker-controlled file reads still allow full database extraction by targeting raw MySQL data files. The vendor states that the issue is fixed in 3.5.72.27183.
A reflected cross-site scripting (XSS) vulnerability in the Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q2.0 through 2025.Q2.8, 2025.Q1.0 through 2025.Q1.15, 2024.Q4.0 through 2024.Q4.7, 2024.Q3.1 through 2024.Q3.13, 2024.Q2.1 through 2024.Q2.13 and 2024.Q1.1 through 2024.Q1.19 allows a remote authenticated user to inject JavaScript code via _com_liferay_expando_web_portlet_ExpandoPortlet_displayType parameter.