An issue was discovered in includes/CommentFormatter/CommentParser.php in MediaWiki before 1.39.7, 1.40.x before 1.40.3, and 1.41.x before 1.41.1. XSS can occur because of mishandling of the 0x1b character, as demonstrated by Special:RecentChanges#%1b0000000.
An issue was discovered in includes/specials/SpecialMovePage.php in MediaWiki before 1.39.7, 1.40.x before 1.40.3, and 1.41.x before 1.41.1. If a user with the necessary rights to move the page opens Special:MovePage for a page with tens of thousands of subpages, then the page will exceed the maximum request time, leading to a denial of service.
BlueZ Phone Book Access Profile Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of BlueZ. User interaction is required to exploit this vulnerability in that the target must connect to a malicious Bluetooth device.
The specific flaw exists within the handling of the Phone Book Access profile. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20938.
BlueZ Phone Book Access Profile Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of BlueZ. User interaction is required to exploit this vulnerability in that the target must connect to a malicious Bluetooth device.
The specific flaw exists within the handling of the Phone Book Access profile. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20936.
GStreamer MXF File Parsing Use-After-Free Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of MXF video files. The issue results from the lack of validating the existence of an object prior to performing operations on the object. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-22299.
GIMP PSP File Parsing Off-By-One Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PSP files. Crafted data in a PSP file can trigger an off-by-one error when calculating a location to write within a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-22097.
GIMP PSD File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PSD files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute arbitrary code in the context of the current process. Was ZDI-CAN-22094.
GIMP DDS File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of DDS files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-22093.
RARLAB WinRAR Recovery Volume Improper Validation of Array Index Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of RARLAB WinRAR. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the processing of recovery volumes. The issue results from the lack of proper validation of user-supplied data, which can result in a memory access past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-21233.
GStreamer H265 Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of H265 encoded video files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-21768.
GStreamer MXF File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of MXF video files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-21661.
GStreamer MXF File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of MXF video files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-21660.
GStreamer SRT File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of SRT subtitle files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20968.
GStreamer PGS File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of PGS subtitle files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-20994.
GStreamer FLAC File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the parsing of FLAC audio files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20775.
BlueZ Audio Profile AVRCP Improper Validation of Array Index Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code via Bluetooth on affected installations of BlueZ. User interaction is required to exploit this vulnerability in that the target must connect to a malicious device.
The specific flaw exists within the handling of the AVRCP protocol. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-19908.
An issue was discovered in uriparser through 0.9.7. ComposeQueryEngine in UriQuery.c has an integer overflow via long keys or values, with a resultant buffer overflow.
libxmljs is vulnerable to a type confusion vulnerability when parsing a specially crafted XML while invoking the namespaces() function (which invokes _wrap__xmlNode_nsDef_get()) on a grand-child of a node that refers to an entity. This vulnerability can lead to denial of service and remote code execution.
libxmljs is vulnerable to a type confusion vulnerability when parsing a specially crafted XML while invoking a function on the result of attrs() that was called on a parsed node. This vulnerability might lead to denial of service (on both 32-bit systems and 64-bit systems), data leak, infinite loop and remote code execution (on 32-bit systems with the XML_PARSE_HUGE flag enabled).
A sandbox bypass vulnerability involving sandbox-defined classes that shadow specific non-sandbox-defined classes in Jenkins Script Security Plugin 1335.vf07d9ce377a_e and earlier allows attackers with permission to define and run sandboxed scripts, including Pipelines, to bypass the sandbox protection and execute arbitrary code in the context of the Jenkins controller JVM.
aiohttp is an asynchronous HTTP client/server framework for asyncio and Python. In affected versions an attacker can send a specially crafted POST (multipart/form-data) request. When the aiohttp server processes it, the server will enter an infinite loop and be unable to process any further requests. An attacker can stop the application from serving requests after sending a single request. This issue has been addressed in version 3.9.4. Users are advised to upgrade. Users unable to upgrade may manually apply a patch to their systems. Please see the linked GHSA for instructions.
A firmware update vulnerability exists in the luci2-io file-import functionality of Milesight UR32L v32.3.0.7-r2. A specially crafted network request can lead to arbitrary firmware update. An attacker can send a network request to trigger this vulnerability.
Type confusion in ANGLE in Google Chrome prior to 124.0.6367.78 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Critical)
In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: avoid stack overflow warnings with clang
A previous patch worked around a KASAN issue in stv0367, now a similar
problem showed up with clang:
drivers/media/dvb-frontends/stv0367.c:1222:12: error: stack frame size (3624) exceeds limit (2048) in 'stv0367ter_set_frontend' [-Werror,-Wframe-larger-than]
1214 | static int stv0367ter_set_frontend(struct dvb_frontend *fe)
Rework the stv0367_writereg() function to be simpler and mark both
register access functions as noinline_for_stack so the temporary
i2c_msg structures do not get duplicated on the stack when KASAN_STACK
is enabled.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: do not compare internal table flags on updates
Restore skipping transaction if table update does not modify flags.
In the Linux kernel, the following vulnerability has been resolved:
fork: defer linking file vma until vma is fully initialized
Thorvald reported a WARNING [1]. And the root cause is below race:
CPU 1 CPU 2
fork hugetlbfs_fallocate
dup_mmap hugetlbfs_punch_hole
i_mmap_lock_write(mapping);
vma_interval_tree_insert_after -- Child vma is visible through i_mmap tree.
i_mmap_unlock_write(mapping);
hugetlb_dup_vma_private -- Clear vma_lock outside i_mmap_rwsem!
i_mmap_lock_write(mapping);
hugetlb_vmdelete_list
vma_interval_tree_foreach
hugetlb_vma_trylock_write -- Vma_lock is cleared.
tmp->vm_ops->open -- Alloc new vma_lock outside i_mmap_rwsem!
hugetlb_vma_unlock_write -- Vma_lock is assigned!!!
i_mmap_unlock_write(mapping);
hugetlb_dup_vma_private() and hugetlb_vm_op_open() are called outside
i_mmap_rwsem lock while vma lock can be used in the same time. Fix this
by deferring linking file vma until vma is fully initialized. Those vmas
should be initialized first before they can be used.
In the Linux kernel, the following vulnerability has been resolved:
r8169: fix LED-related deadlock on module removal
Binding devm_led_classdev_register() to the netdev is problematic
because on module removal we get a RTNL-related deadlock. Fix this
by avoiding the device-managed LED functions.
Note: We can safely call led_classdev_unregister() for a LED even
if registering it failed, because led_classdev_unregister() detects
this and is a no-op in this case.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: Fix potential data-race in __nft_expr_type_get()
nft_unregister_expr() can concurrent with __nft_expr_type_get(),
and there is not any protection when iterate over nf_tables_expressions
list in __nft_expr_type_get(). Therefore, there is potential data-race
of nf_tables_expressions list entry.
Use list_for_each_entry_rcu() to iterate over nf_tables_expressions
list in __nft_expr_type_get(), and use rcu_read_lock() in the caller
nft_expr_type_get() to protect the entire type query process.
In the Linux kernel, the following vulnerability has been resolved:
drm: nv04: Fix out of bounds access
When Output Resource (dcb->or) value is assigned in
fabricate_dcb_output(), there may be out of bounds access to
dac_users array in case dcb->or is zero because ffs(dcb->or) is
used as index there.
The 'or' argument of fabricate_dcb_output() must be interpreted as a
number of bit to set, not value.
Utilize macros from 'enum nouveau_or' in calls instead of hardcoding.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
serial: mxs-auart: add spinlock around changing cts state
The uart_handle_cts_change() function in serial_core expects the caller
to hold uport->lock. For example, I have seen the below kernel splat,
when the Bluetooth driver is loaded on an i.MX28 board.
[ 85.119255] ------------[ cut here ]------------
[ 85.124413] WARNING: CPU: 0 PID: 27 at /drivers/tty/serial/serial_core.c:3453 uart_handle_cts_change+0xb4/0xec
[ 85.134694] Modules linked in: hci_uart bluetooth ecdh_generic ecc wlcore_sdio configfs
[ 85.143314] CPU: 0 PID: 27 Comm: kworker/u3:0 Not tainted 6.6.3-00021-gd62a2f068f92 #1
[ 85.151396] Hardware name: Freescale MXS (Device Tree)
[ 85.156679] Workqueue: hci0 hci_power_on [bluetooth]
(...)
[ 85.191765] uart_handle_cts_change from mxs_auart_irq_handle+0x380/0x3f4
[ 85.198787] mxs_auart_irq_handle from __handle_irq_event_percpu+0x88/0x210
(...)
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_ncm: Fix UAF ncm object at re-bind after usb ep transport error
When ncm function is working and then stop usb0 interface for link down,
eth_stop() is called. At this piont, accidentally if usb transport error
should happen in usb_ep_enable(), 'in_ep' and/or 'out_ep' may not be enabled.
After that, ncm_disable() is called to disable for ncm unbind
but gether_disconnect() is never called since 'in_ep' is not enabled.
As the result, ncm object is released in ncm unbind
but 'dev->port_usb' associated to 'ncm->port' is not NULL.
And when ncm bind again to recover netdev, ncm object is reallocated
but usb0 interface is already associated to previous released ncm object.
Therefore, once usb0 interface is up and eth_start_xmit() is called,
released ncm object is dereferrenced and it might cause use-after-free memory.
[function unlink via configfs]
usb0: eth_stop dev->port_usb=ffffff9b179c3200
--> error happens in usb_ep_enable().
NCM: ncm_disable: ncm=ffffff9b179c3200
--> no gether_disconnect() since ncm->port.in_ep->enabled is false.
NCM: ncm_unbind: ncm unbind ncm=ffffff9b179c3200
NCM: ncm_free: ncm free ncm=ffffff9b179c3200 <-- released ncm
[function link via configfs]
NCM: ncm_alloc: ncm alloc ncm=ffffff9ac4f8a000
NCM: ncm_bind: ncm bind ncm=ffffff9ac4f8a000
NCM: ncm_set_alt: ncm=ffffff9ac4f8a000 alt=0
usb0: eth_open dev->port_usb=ffffff9b179c3200 <-- previous released ncm
usb0: eth_start dev->port_usb=ffffff9b179c3200 <--
eth_start_xmit()
--> dev->wrap()
Unable to handle kernel paging request at virtual address dead00000000014f
This patch addresses the issue by checking if 'ncm->netdev' is not NULL at
ncm_disable() to call gether_disconnect() to deassociate 'dev->port_usb'.
It's more reasonable to check 'ncm->netdev' to call gether_connect/disconnect
rather than check 'ncm->port.in_ep->enabled' since it might not be enabled
but the gether connection might be established.
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: Correct the PDO counting in pd_set
Off-by-one errors happen because nr_snk_pdo and nr_src_pdo are
incorrectly added one. The index of the loop is equal to the number of
PDOs to be updated when leaving the loop and it doesn't need to be added
one.
When doing the power negotiation, TCPM relies on the "nr_snk_pdo" as
the size of the local sink PDO array to match the Source capabilities
of the partner port. If the off-by-one overflow occurs, a wrong RDO
might be sent and unexpected power transfer might happen such as over
voltage or over current (than expected).
"nr_src_pdo" is used to set the Rp level when the port is in Source
role. It is also the array size of the local Source capabilities when
filling up the buffer which will be sent as the Source PDOs (such as
in Power Negotiation). If the off-by-one overflow occurs, a wrong Rp
level might be set and wrong Source PDOs will be sent to the partner
port. This could potentially cause over current or port resets.
In the Linux kernel, the following vulnerability has been resolved:
init/main.c: Fix potential static_command_line memory overflow
We allocate memory of size 'xlen + strlen(boot_command_line) + 1' for
static_command_line, but the strings copied into static_command_line are
extra_command_line and command_line, rather than extra_command_line and
boot_command_line.
When strlen(command_line) > strlen(boot_command_line), static_command_line
will overflow.
This patch just recovers strlen(command_line) which was miss-consolidated
with strlen(boot_command_line) in the commit f5c7310ac73e ("init/main: add
checks for the return value of memblock_alloc*()")
In the Linux kernel, the following vulnerability has been resolved:
Squashfs: check the inode number is not the invalid value of zero
Syskiller has produced an out of bounds access in fill_meta_index().
That out of bounds access is ultimately caused because the inode
has an inode number with the invalid value of zero, which was not checked.
The reason this causes the out of bounds access is due to following
sequence of events:
1. Fill_meta_index() is called to allocate (via empty_meta_index())
and fill a metadata index. It however suffers a data read error
and aborts, invalidating the newly returned empty metadata index.
It does this by setting the inode number of the index to zero,
which means unused (zero is not a valid inode number).
2. When fill_meta_index() is subsequently called again on another
read operation, locate_meta_index() returns the previous index
because it matches the inode number of 0. Because this index
has been returned it is expected to have been filled, and because
it hasn't been, an out of bounds access is performed.
This patch adds a sanity check which checks that the inode number
is not zero when the inode is created and returns -EINVAL if it is.
[phillip@squashfs.org.uk: whitespace fix]
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix OOB in nilfs_set_de_type
The size of the nilfs_type_by_mode array in the fs/nilfs2/dir.c file is
defined as "S_IFMT >> S_SHIFT", but the nilfs_set_de_type() function,
which uses this array, specifies the index to read from the array in the
same way as "(mode & S_IFMT) >> S_SHIFT".
static void nilfs_set_de_type(struct nilfs_dir_entry *de, struct inode
*inode)
{
umode_t mode = inode->i_mode;
de->file_type = nilfs_type_by_mode[(mode & S_IFMT)>>S_SHIFT]; // oob
}
However, when the index is determined this way, an out-of-bounds (OOB)
error occurs by referring to an index that is 1 larger than the array size
when the condition "mode & S_IFMT == S_IFMT" is satisfied. Therefore, a
patch to resize the nilfs_type_by_mode array should be applied to prevent
OOB errors.
In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: mmcc-msm8974: fix terminating of frequency table arrays
The frequency table arrays are supposed to be terminated with an
empty element. Add such entry to the end of the arrays where it
is missing in order to avoid possible out-of-bound access when
the table is traversed by functions like qcom_find_freq() or
qcom_find_freq_floor().
Only compile tested.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix failure to detect DAT corruption in btree and direct mappings
Patch series "nilfs2: fix kernel bug at submit_bh_wbc()".
This resolves a kernel BUG reported by syzbot. Since there are two
flaws involved, I've made each one a separate patch.
The first patch alone resolves the syzbot-reported bug, but I think
both fixes should be sent to stable, so I've tagged them as such.
This patch (of 2):
Syzbot has reported a kernel bug in submit_bh_wbc() when writing file data
to a nilfs2 file system whose metadata is corrupted.
There are two flaws involved in this issue.
The first flaw is that when nilfs_get_block() locates a data block using
btree or direct mapping, if the disk address translation routine
nilfs_dat_translate() fails with internal code -ENOENT due to DAT metadata
corruption, it can be passed back to nilfs_get_block(). This causes
nilfs_get_block() to misidentify an existing block as non-existent,
causing both data block lookup and insertion to fail inconsistently.
The second flaw is that nilfs_get_block() returns a successful status in
this inconsistent state. This causes the caller __block_write_begin_int()
or others to request a read even though the buffer is not mapped,
resulting in a BUG_ON check for the BH_Mapped flag in submit_bh_wbc()
failing.
This fixes the first issue by changing the return value to code -EINVAL
when a conversion using DAT fails with code -ENOENT, avoiding the
conflicting condition that leads to the kernel bug described above. Here,
code -EINVAL indicates that metadata corruption was detected during the
block lookup, which will be properly handled as a file system error and
converted to -EIO when passing through the nilfs2 bmap layer.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: prevent kernel bug at submit_bh_wbc()
Fix a bug where nilfs_get_block() returns a successful status when
searching and inserting the specified block both fail inconsistently. If
this inconsistent behavior is not due to a previously fixed bug, then an
unexpected race is occurring, so return a temporary error -EAGAIN instead.
This prevents callers such as __block_write_begin_int() from requesting a
read into a buffer that is not mapped, which would cause the BUG_ON check
for the BH_Mapped flag in submit_bh_wbc() to fail.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix slab-out-of-bounds in smb_strndup_from_utf16()
If ->NameOffset of smb2_create_req is smaller than Buffer offset of
smb2_create_req, slab-out-of-bounds read can happen from smb2_open.
This patch set the minimum value of the name offset to the buffer offset
to validate name length of smb2_create_req().
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix potencial out-of-bounds when buffer offset is invalid
I found potencial out-of-bounds when buffer offset fields of a few requests
is invalid. This patch set the minimum value of buffer offset field to
->Buffer offset to validate buffer length.
In the Linux kernel, the following vulnerability has been resolved:
wireguard: netlink: check for dangling peer via is_dead instead of empty list
If all peers are removed via wg_peer_remove_all(), rather than setting
peer_list to empty, the peer is added to a temporary list with a head on
the stack of wg_peer_remove_all(). If a netlink dump is resumed and the
cursored peer is one that has been removed via wg_peer_remove_all(), it
will iterate from that peer and then attempt to dump freed peers.
Fix this by instead checking peer->is_dead, which was explictly created
for this purpose. Also move up the device_update_lock lockdep assertion,
since reading is_dead relies on that.
It can be reproduced by a small script like:
echo "Setting config..."
ip link add dev wg0 type wireguard
wg setconf wg0 /big-config
(
while true; do
echo "Showing config..."
wg showconf wg0 > /dev/null
done
) &
sleep 4
wg setconf wg0 <(printf "[Peer]\nPublicKey=$(wg genkey)\n")
Resulting in:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x182a/0x1b20
Read of size 8 at addr ffff88811956ec70 by task wg/59
CPU: 2 PID: 59 Comm: wg Not tainted 6.8.0-rc2-debug+ #5
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x70
print_address_description.constprop.0+0x2c/0x380
print_report+0xab/0x250
kasan_report+0xba/0xf0
__lock_acquire+0x182a/0x1b20
lock_acquire+0x191/0x4b0
down_read+0x80/0x440
get_peer+0x140/0xcb0
wg_get_device_dump+0x471/0x1130
Arbitrary File Read vulnerability in novel-plus 4.3.0 and before allows a remote attacker to obtain sensitive information via a crafted GET request using the filePath parameter.
A use-after-free vulnerability exists in the way Foxit Reader 2024.1.0.23997 handles a Barcode widget. A specially crafted JavaScript code inside a malicious PDF document can trigger reuse of a previously freed object, which can lead to memory corruption and result in arbitrary code execution. An attacker needs to trick the user into opening the malicious file to trigger this vulnerability. Exploitation is also possible if a user visits a specially crafted, malicious site if the browser plugin extension is enabled.
A use-after-free vulnerability exists in the way Foxit Reader 2024.1.0.23997 handles a ComboBox widget. A specially crafted JavaScript code inside a malicious PDF document can trigger reuse of a previously freed object, which can lead to memory corruption and result in arbitrary code execution. An attacker needs to trick the user into opening the malicious file to trigger this vulnerability. Exploitation is also possible if a user visits a specially crafted, malicious site if the browser plugin extension is enabled.
A type confusion vulnerability vulnerability exists in the way Foxit Reader 2024.1.0.23997 handles a Lock object. A specially crafted Javascript code inside a malicious PDF document can trigger this vulnerability, which can lead to memory corruption and result in arbitrary code execution. An attacker needs to trick the user into opening the malicious file to trigger this vulnerability. Exploitation is also possible if a user visits a specially crafted, malicious site if the browser plugin extension is enabled.