In the Linux kernel, the following vulnerability has been resolved:
net: tls: explicitly disallow disconnect
syzbot discovered that it can disconnect a TLS socket and then
run into all sort of unexpected corner cases. I have a vague
recollection of Eric pointing this out to us a long time ago.
Supporting disconnect is really hard, for one thing if offload
is enabled we'd need to wait for all packets to be _acked_.
Disconnect is not commonly used, disallow it.
The immediate problem syzbot run into is the warning in the strp,
but that's just the easiest bug to trigger:
WARNING: CPU: 0 PID: 5834 at net/tls/tls_strp.c:486 tls_strp_msg_load+0x72e/0xa80 net/tls/tls_strp.c:486
RIP: 0010:tls_strp_msg_load+0x72e/0xa80 net/tls/tls_strp.c:486
Call Trace:
<TASK>
tls_rx_rec_wait+0x280/0xa60 net/tls/tls_sw.c:1363
tls_sw_recvmsg+0x85c/0x1c30 net/tls/tls_sw.c:2043
inet6_recvmsg+0x2c9/0x730 net/ipv6/af_inet6.c:678
sock_recvmsg_nosec net/socket.c:1023 [inline]
sock_recvmsg+0x109/0x280 net/socket.c:1045
__sys_recvfrom+0x202/0x380 net/socket.c:2237
In the Linux kernel, the following vulnerability has been resolved:
net: libwx: handle page_pool_dev_alloc_pages error
page_pool_dev_alloc_pages could return NULL. There was a WARN_ON(!page)
but it would still proceed to use the NULL pointer and then crash.
This is similar to commit 001ba0902046
("net: fec: handle page_pool_dev_alloc_pages error").
This is found by our static analysis tool KNighter.
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/huc: Fix fence not released on early probe errors
HuC delayed loading fence, introduced with commit 27536e03271da
("drm/i915/huc: track delayed HuC load with a fence"), is registered with
object tracker early on driver probe but unregistered only from driver
remove, which is not called on early probe errors. Since its memory is
allocated under devres, then released anyway, it may happen to be
allocated again to the fence and reused on future driver probes, resulting
in kernel warnings that taint the kernel:
<4> [309.731371] ------------[ cut here ]------------
<3> [309.731373] ODEBUG: init destroyed (active state 0) object: ffff88813d7dd2e0 object type: i915_sw_fence hint: sw_fence_dummy_notify+0x0/0x20 [i915]
<4> [309.731575] WARNING: CPU: 2 PID: 3161 at lib/debugobjects.c:612 debug_print_object+0x93/0xf0
...
<4> [309.731693] CPU: 2 UID: 0 PID: 3161 Comm: i915_module_loa Tainted: G U 6.14.0-CI_DRM_16362-gf0fd77956987+ #1
...
<4> [309.731700] RIP: 0010:debug_print_object+0x93/0xf0
...
<4> [309.731728] Call Trace:
<4> [309.731730] <TASK>
...
<4> [309.731949] __debug_object_init+0x17b/0x1c0
<4> [309.731957] debug_object_init+0x34/0x50
<4> [309.732126] __i915_sw_fence_init+0x34/0x60 [i915]
<4> [309.732256] intel_huc_init_early+0x4b/0x1d0 [i915]
<4> [309.732468] intel_uc_init_early+0x61/0x680 [i915]
<4> [309.732667] intel_gt_common_init_early+0x105/0x130 [i915]
<4> [309.732804] intel_root_gt_init_early+0x63/0x80 [i915]
<4> [309.732938] i915_driver_probe+0x1fa/0xeb0 [i915]
<4> [309.733075] i915_pci_probe+0xe6/0x220 [i915]
<4> [309.733198] local_pci_probe+0x44/0xb0
<4> [309.733203] pci_device_probe+0xf4/0x270
<4> [309.733209] really_probe+0xee/0x3c0
<4> [309.733215] __driver_probe_device+0x8c/0x180
<4> [309.733219] driver_probe_device+0x24/0xd0
<4> [309.733223] __driver_attach+0x10f/0x220
<4> [309.733230] bus_for_each_dev+0x7d/0xe0
<4> [309.733236] driver_attach+0x1e/0x30
<4> [309.733239] bus_add_driver+0x151/0x290
<4> [309.733244] driver_register+0x5e/0x130
<4> [309.733247] __pci_register_driver+0x7d/0x90
<4> [309.733251] i915_pci_register_driver+0x23/0x30 [i915]
<4> [309.733413] i915_init+0x34/0x120 [i915]
<4> [309.733655] do_one_initcall+0x62/0x3f0
<4> [309.733667] do_init_module+0x97/0x2a0
<4> [309.733671] load_module+0x25ff/0x2890
<4> [309.733688] init_module_from_file+0x97/0xe0
<4> [309.733701] idempotent_init_module+0x118/0x330
<4> [309.733711] __x64_sys_finit_module+0x77/0x100
<4> [309.733715] x64_sys_call+0x1f37/0x2650
<4> [309.733719] do_syscall_64+0x91/0x180
<4> [309.733763] entry_SYSCALL_64_after_hwframe+0x76/0x7e
<4> [309.733792] </TASK>
...
<4> [309.733806] ---[ end trace 0000000000000000 ]---
That scenario is most easily reproducible with
igt@i915_module_load@reload-with-fault-injection.
Fix the issue by moving the cleanup step to driver release path.
(cherry picked from commit 795dbde92fe5c6996a02a5b579481de73035e7bf)
In the Linux kernel, the following vulnerability has been resolved:
x86/cpu: Avoid running off the end of an AMD erratum table
The NULL array terminator at the end of erratum_1386_microcode was
removed during the switch from x86_cpu_desc to x86_cpu_id. This
causes readers to run off the end of the array.
Replace the NULL.
In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Fix NULL pointer deference in mtk_iommu_device_group
Currently, mtk_iommu calls during probe iommu_device_register before
the hw_list from driver data is initialized. Since iommu probing issue
fix, it leads to NULL pointer dereference in mtk_iommu_device_group when
hw_list is accessed with list_first_entry (not null safe).
So, change the call order to ensure iommu_device_register is called
after the driver data are initialized.
In the Linux kernel, the following vulnerability has been resolved:
perf: Fix hang while freeing sigtrap event
Perf can hang while freeing a sigtrap event if a related deferred
signal hadn't managed to be sent before the file got closed:
perf_event_overflow()
task_work_add(perf_pending_task)
fput()
task_work_add(____fput())
task_work_run()
____fput()
perf_release()
perf_event_release_kernel()
_free_event()
perf_pending_task_sync()
task_work_cancel() -> FAILED
rcuwait_wait_event()
Once task_work_run() is running, the list of pending callbacks is
removed from the task_struct and from this point on task_work_cancel()
can't remove any pending and not yet started work items, hence the
task_work_cancel() failure and the hang on rcuwait_wait_event().
Task work could be changed to remove one work at a time, so a work
running on the current task can always cancel a pending one, however
the wait / wake design is still subject to inverted dependencies when
remote targets are involved, as pictured by Oleg:
T1 T2
fd = perf_event_open(pid => T2->pid); fd = perf_event_open(pid => T1->pid);
close(fd) close(fd)
<IRQ> <IRQ>
perf_event_overflow() perf_event_overflow()
task_work_add(perf_pending_task) task_work_add(perf_pending_task)
</IRQ> </IRQ>
fput() fput()
task_work_add(____fput()) task_work_add(____fput())
task_work_run() task_work_run()
____fput() ____fput()
perf_release() perf_release()
perf_event_release_kernel() perf_event_release_kernel()
_free_event() _free_event()
perf_pending_task_sync() perf_pending_task_sync()
rcuwait_wait_event() rcuwait_wait_event()
Therefore the only option left is to acquire the event reference count
upon queueing the perf task work and release it from the task work, just
like it was done before 3a5465418f5f ("perf: Fix event leak upon exec and file release")
but without the leaks it fixed.
Some adjustments are necessary to make it work:
* A child event might dereference its parent upon freeing. Care must be
taken to release the parent last.
* Some places assuming the event doesn't have any reference held and
therefore can be freed right away must instead put the reference and
let the reference counting to its job.
In the Linux kernel, the following vulnerability has been resolved:
perf/dwc_pcie: fix duplicate pci_dev devices
During platform_device_register, wrongly using struct device
pci_dev as platform_data caused a kmemdup copy of pci_dev. Worse
still, accessing the duplicated device leads to list corruption as its
mutex content (e.g., list, magic) remains the same as the original.
In the Linux kernel, the following vulnerability has been resolved:
PM: hibernate: Avoid deadlock in hibernate_compressor_param_set()
syzbot reported a deadlock in lock_system_sleep() (see below).
The write operation to "/sys/module/hibernate/parameters/compressor"
conflicts with the registration of ieee80211 device, resulting in a deadlock
when attempting to acquire system_transition_mutex under param_lock.
To avoid this deadlock, change hibernate_compressor_param_set() to use
mutex_trylock() for attempting to acquire system_transition_mutex and
return -EBUSY when it fails.
Task flags need not be saved or adjusted before calling
mutex_trylock(&system_transition_mutex) because the caller is not going
to end up waiting for this mutex and if it runs concurrently with system
suspend in progress, it will be frozen properly when it returns to user
space.
syzbot report:
syz-executor895/5833 is trying to acquire lock:
ffffffff8e0828c8 (system_transition_mutex){+.+.}-{4:4}, at: lock_system_sleep+0x87/0xa0 kernel/power/main.c:56
but task is already holding lock:
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: kernel_param_lock kernel/params.c:607 [inline]
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: param_attr_store+0xe6/0x300 kernel/params.c:586
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (param_lock){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
ieee80211_rate_control_ops_get net/mac80211/rate.c:220 [inline]
rate_control_alloc net/mac80211/rate.c:266 [inline]
ieee80211_init_rate_ctrl_alg+0x18d/0x6b0 net/mac80211/rate.c:1015
ieee80211_register_hw+0x20cd/0x4060 net/mac80211/main.c:1531
mac80211_hwsim_new_radio+0x304e/0x54e0 drivers/net/wireless/virtual/mac80211_hwsim.c:5558
init_mac80211_hwsim+0x432/0x8c0 drivers/net/wireless/virtual/mac80211_hwsim.c:6910
do_one_initcall+0x128/0x700 init/main.c:1257
do_initcall_level init/main.c:1319 [inline]
do_initcalls init/main.c:1335 [inline]
do_basic_setup init/main.c:1354 [inline]
kernel_init_freeable+0x5c7/0x900 init/main.c:1568
kernel_init+0x1c/0x2b0 init/main.c:1457
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
-> #2 (rtnl_mutex){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
wg_pm_notification drivers/net/wireguard/device.c:80 [inline]
wg_pm_notification+0x49/0x180 drivers/net/wireguard/device.c:64
notifier_call_chain+0xb7/0x410 kernel/notifier.c:85
notifier_call_chain_robust kernel/notifier.c:120 [inline]
blocking_notifier_call_chain_robust kernel/notifier.c:345 [inline]
blocking_notifier_call_chain_robust+0xc9/0x170 kernel/notifier.c:333
pm_notifier_call_chain_robust+0x27/0x60 kernel/power/main.c:102
snapshot_open+0x189/0x2b0 kernel/power/user.c:77
misc_open+0x35a/0x420 drivers/char/misc.c:179
chrdev_open+0x237/0x6a0 fs/char_dev.c:414
do_dentry_open+0x735/0x1c40 fs/open.c:956
vfs_open+0x82/0x3f0 fs/open.c:1086
do_open fs/namei.c:3830 [inline]
path_openat+0x1e88/0x2d80 fs/namei.c:3989
do_filp_open+0x20c/0x470 fs/namei.c:4016
do_sys_openat2+0x17a/0x1e0 fs/open.c:1428
do_sys_open fs/open.c:1443 [inline]
__do_sys_openat fs/open.c:1459 [inline]
__se_sys_openat fs/open.c:1454 [inline]
__x64_sys_openat+0x175/0x210 fs/open.c:1454
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #1 ((pm_chain_head).rwsem){++++}-{4:4}:
down_read+0x9a/0x330 kernel/locking/rwsem.c:1524
blocking_notifier_call_chain_robust kerne
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix memory leak in ath12k_pci_remove()
Kmemleak reported this error:
unreferenced object 0xffff1c165cec3060 (size 32):
comm "insmod", pid 560, jiffies 4296964570 (age 235.596s)
backtrace:
[<000000005434db68>] __kmem_cache_alloc_node+0x1f4/0x2c0
[<000000001203b155>] kmalloc_trace+0x40/0x88
[<0000000028adc9c8>] _request_firmware+0xb8/0x608
[<00000000cad1aef7>] firmware_request_nowarn+0x50/0x80
[<000000005011a682>] local_pci_probe+0x48/0xd0
[<00000000077cd295>] pci_device_probe+0xb4/0x200
[<0000000087184c94>] really_probe+0x150/0x2c0
The firmware memory was allocated in ath12k_pci_probe(), but not
freed in ath12k_pci_remove() in case ATH12K_FLAG_QMI_FAIL bit is
set. So call ath12k_fw_unmap() to free the memory.
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.2.0-02280-QCAHMTSWPL_V1.0_V2.0_SILICONZ-1
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Avoid memory leak while enabling statistics
Driver uses monitor destination rings for extended statistics mode and
standalone monitor mode. In extended statistics mode, TLVs are parsed from
the buffer received from the monitor destination ring and assigned to the
ppdu_info structure to update per-packet statistics. In standalone monitor
mode, along with per-packet statistics, the packet data (payload) is
captured, and the driver updates per MSDU to mac80211.
When the AP interface is enabled, only extended statistics mode is
activated. As part of enabling monitor rings for collecting statistics,
the driver subscribes to HAL_RX_MPDU_START TLV in the filter
configuration. This TLV is received from the monitor destination ring, and
kzalloc for the mon_mpdu object occurs, which is not freed, leading to a
memory leak. The kzalloc for the mon_mpdu object is only required while
enabling the standalone monitor interface. This causes a memory leak while
enabling extended statistics mode in the driver.
Fix this memory leak by removing the kzalloc for the mon_mpdu object in
the HAL_RX_MPDU_START TLV handling. Additionally, remove the standalone
monitor mode handlings in the HAL_MON_BUF_ADDR and HAL_RX_MSDU_END TLVs.
These TLV tags will be handled properly when enabling standalone monitor
mode in the future.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3
In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix uninit-value access of imap allocated in the diMount() function
syzbot reports that hex_dump_to_buffer is using uninit-value:
=====================================================
BUG: KMSAN: uninit-value in hex_dump_to_buffer+0x888/0x1100 lib/hexdump.c:171
hex_dump_to_buffer+0x888/0x1100 lib/hexdump.c:171
print_hex_dump+0x13d/0x3e0 lib/hexdump.c:276
diFree+0x5ba/0x4350 fs/jfs/jfs_imap.c:876
jfs_evict_inode+0x510/0x550 fs/jfs/inode.c:156
evict+0x723/0xd10 fs/inode.c:796
iput_final fs/inode.c:1946 [inline]
iput+0x97b/0xdb0 fs/inode.c:1972
txUpdateMap+0xf3e/0x1150 fs/jfs/jfs_txnmgr.c:2367
txLazyCommit fs/jfs/jfs_txnmgr.c:2664 [inline]
jfs_lazycommit+0x627/0x11d0 fs/jfs/jfs_txnmgr.c:2733
kthread+0x6b9/0xef0 kernel/kthread.c:464
ret_from_fork+0x6d/0x90 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4121 [inline]
slab_alloc_node mm/slub.c:4164 [inline]
__kmalloc_cache_noprof+0x8e3/0xdf0 mm/slub.c:4320
kmalloc_noprof include/linux/slab.h:901 [inline]
diMount+0x61/0x7f0 fs/jfs/jfs_imap.c:105
jfs_mount+0xa8e/0x11d0 fs/jfs/jfs_mount.c:176
jfs_fill_super+0xa47/0x17c0 fs/jfs/super.c:523
get_tree_bdev_flags+0x6ec/0x910 fs/super.c:1636
get_tree_bdev+0x37/0x50 fs/super.c:1659
jfs_get_tree+0x34/0x40 fs/jfs/super.c:635
vfs_get_tree+0xb1/0x5a0 fs/super.c:1814
do_new_mount+0x71f/0x15e0 fs/namespace.c:3560
path_mount+0x742/0x1f10 fs/namespace.c:3887
do_mount fs/namespace.c:3900 [inline]
__do_sys_mount fs/namespace.c:4111 [inline]
__se_sys_mount+0x71f/0x800 fs/namespace.c:4088
__x64_sys_mount+0xe4/0x150 fs/namespace.c:4088
x64_sys_call+0x39bf/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:166
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
=====================================================
The reason is that imap is not properly initialized after memory
allocation. It will cause the snprintf() function to write uninitialized
data into linebuf within hex_dump_to_buffer().
Fix this by using kzalloc instead of kmalloc to clear its content at the
beginning in diMount().
In the Linux kernel, the following vulnerability has been resolved:
jfs: Prevent copying of nlink with value 0 from disk inode
syzbot report a deadlock in diFree. [1]
When calling "ioctl$LOOP_SET_STATUS64", the offset value passed in is 4,
which does not match the mounted loop device, causing the mapping of the
mounted loop device to be invalidated.
When creating the directory and creating the inode of iag in diReadSpecial(),
read the page of fixed disk inode (AIT) in raw mode in read_metapage(), the
metapage data it returns is corrupted, which causes the nlink value of 0 to be
assigned to the iag inode when executing copy_from_dinode(), which ultimately
causes a deadlock when entering diFree().
To avoid this, first check the nlink value of dinode before setting iag inode.
[1]
WARNING: possible recursive locking detected
6.12.0-rc7-syzkaller-00212-g4a5df3796467 #0 Not tainted
--------------------------------------------
syz-executor301/5309 is trying to acquire lock:
ffff888044548920 (&(imap->im_aglock[index])){+.+.}-{3:3}, at: diFree+0x37c/0x2fb0 fs/jfs/jfs_imap.c:889
but task is already holding lock:
ffff888044548920 (&(imap->im_aglock[index])){+.+.}-{3:3}, at: diAlloc+0x1b6/0x1630
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(imap->im_aglock[index]));
lock(&(imap->im_aglock[index]));
*** DEADLOCK ***
May be due to missing lock nesting notation
5 locks held by syz-executor301/5309:
#0: ffff8880422a4420 (sb_writers#9){.+.+}-{0:0}, at: mnt_want_write+0x3f/0x90 fs/namespace.c:515
#1: ffff88804755b390 (&type->i_mutex_dir_key#6/1){+.+.}-{3:3}, at: inode_lock_nested include/linux/fs.h:850 [inline]
#1: ffff88804755b390 (&type->i_mutex_dir_key#6/1){+.+.}-{3:3}, at: filename_create+0x260/0x540 fs/namei.c:4026
#2: ffff888044548920 (&(imap->im_aglock[index])){+.+.}-{3:3}, at: diAlloc+0x1b6/0x1630
#3: ffff888044548890 (&imap->im_freelock){+.+.}-{3:3}, at: diNewIAG fs/jfs/jfs_imap.c:2460 [inline]
#3: ffff888044548890 (&imap->im_freelock){+.+.}-{3:3}, at: diAllocExt fs/jfs/jfs_imap.c:1905 [inline]
#3: ffff888044548890 (&imap->im_freelock){+.+.}-{3:3}, at: diAllocAG+0x4b7/0x1e50 fs/jfs/jfs_imap.c:1669
#4: ffff88804755a618 (&jfs_ip->rdwrlock/1){++++}-{3:3}, at: diNewIAG fs/jfs/jfs_imap.c:2477 [inline]
#4: ffff88804755a618 (&jfs_ip->rdwrlock/1){++++}-{3:3}, at: diAllocExt fs/jfs/jfs_imap.c:1905 [inline]
#4: ffff88804755a618 (&jfs_ip->rdwrlock/1){++++}-{3:3}, at: diAllocAG+0x869/0x1e50 fs/jfs/jfs_imap.c:1669
stack backtrace:
CPU: 0 UID: 0 PID: 5309 Comm: syz-executor301 Not tainted 6.12.0-rc7-syzkaller-00212-g4a5df3796467 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_deadlock_bug+0x483/0x620 kernel/locking/lockdep.c:3037
check_deadlock kernel/locking/lockdep.c:3089 [inline]
validate_chain+0x15e2/0x5920 kernel/locking/lockdep.c:3891
__lock_acquire+0x1384/0x2050 kernel/locking/lockdep.c:5202
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825
__mutex_lock_common kernel/locking/mutex.c:608 [inline]
__mutex_lock+0x136/0xd70 kernel/locking/mutex.c:752
diFree+0x37c/0x2fb0 fs/jfs/jfs_imap.c:889
jfs_evict_inode+0x32d/0x440 fs/jfs/inode.c:156
evict+0x4e8/0x9b0 fs/inode.c:725
diFreeSpecial fs/jfs/jfs_imap.c:552 [inline]
duplicateIXtree+0x3c6/0x550 fs/jfs/jfs_imap.c:3022
diNewIAG fs/jfs/jfs_imap.c:2597 [inline]
diAllocExt fs/jfs/jfs_imap.c:1905 [inline]
diAllocAG+0x17dc/0x1e50 fs/jfs/jfs_imap.c:1669
diAlloc+0x1d2/0x1630 fs/jfs/jfs_imap.c:1590
ialloc+0x8f/0x900 fs/jfs/jfs_inode.c:56
jfs_mkdir+0x1c5/0xba0 fs/jfs/namei.c:225
vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257
do_mkdirat+0x264/0x3a0 fs/namei.c:4280
__do_sys_mkdirat fs/namei.c:4295 [inline]
__se_sys_mkdirat fs/namei.c:4293 [inline]
__x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293
do_syscall_x64 arch/x86/en
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
jfs: add sanity check for agwidth in dbMount
The width in dmapctl of the AG is zero, it trigger a divide error when
calculating the control page level in dbAllocAG.
To avoid this issue, add a check for agwidth in dbAllocAG.
In the Linux kernel, the following vulnerability has been resolved:
net: vlan: don't propagate flags on open
With the device instance lock, there is now a possibility of a deadlock:
[ 1.211455] ============================================
[ 1.211571] WARNING: possible recursive locking detected
[ 1.211687] 6.14.0-rc5-01215-g032756b4ca7a-dirty #5 Not tainted
[ 1.211823] --------------------------------------------
[ 1.211936] ip/184 is trying to acquire lock:
[ 1.212032] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_set_allmulti+0x4e/0xb0
[ 1.212207]
[ 1.212207] but task is already holding lock:
[ 1.212332] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.212487]
[ 1.212487] other info that might help us debug this:
[ 1.212626] Possible unsafe locking scenario:
[ 1.212626]
[ 1.212751] CPU0
[ 1.212815] ----
[ 1.212871] lock(&dev->lock);
[ 1.212944] lock(&dev->lock);
[ 1.213016]
[ 1.213016] *** DEADLOCK ***
[ 1.213016]
[ 1.213143] May be due to missing lock nesting notation
[ 1.213143]
[ 1.213294] 3 locks held by ip/184:
[ 1.213371] #0: ffffffff838b53e0 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x1b/0xa0
[ 1.213543] #1: ffffffff84e5fc70 (&net->rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x37/0xa0
[ 1.213727] #2: ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.213895]
[ 1.213895] stack backtrace:
[ 1.213991] CPU: 0 UID: 0 PID: 184 Comm: ip Not tainted 6.14.0-rc5-01215-g032756b4ca7a-dirty #5
[ 1.213993] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 1.213994] Call Trace:
[ 1.213995] <TASK>
[ 1.213996] dump_stack_lvl+0x8e/0xd0
[ 1.214000] print_deadlock_bug+0x28b/0x2a0
[ 1.214020] lock_acquire+0xea/0x2a0
[ 1.214027] __mutex_lock+0xbf/0xd40
[ 1.214038] dev_set_allmulti+0x4e/0xb0 # real_dev->flags & IFF_ALLMULTI
[ 1.214040] vlan_dev_open+0xa5/0x170 # ndo_open on vlandev
[ 1.214042] __dev_open+0x145/0x270
[ 1.214046] __dev_change_flags+0xb0/0x1e0
[ 1.214051] netif_change_flags+0x22/0x60 # IFF_UP vlandev
[ 1.214053] dev_change_flags+0x61/0xb0 # for each device in group from dev->vlan_info
[ 1.214055] vlan_device_event+0x766/0x7c0 # on netdevsim0
[ 1.214058] notifier_call_chain+0x78/0x120
[ 1.214062] netif_open+0x6d/0x90
[ 1.214064] dev_open+0x5b/0xb0 # locks netdevsim0
[ 1.214066] bond_enslave+0x64c/0x1230
[ 1.214075] do_set_master+0x175/0x1e0 # on netdevsim0
[ 1.214077] do_setlink+0x516/0x13b0
[ 1.214094] rtnl_newlink+0xaba/0xb80
[ 1.214132] rtnetlink_rcv_msg+0x440/0x490
[ 1.214144] netlink_rcv_skb+0xeb/0x120
[ 1.214150] netlink_unicast+0x1f9/0x320
[ 1.214153] netlink_sendmsg+0x346/0x3f0
[ 1.214157] __sock_sendmsg+0x86/0xb0
[ 1.214160] ____sys_sendmsg+0x1c8/0x220
[ 1.214164] ___sys_sendmsg+0x28f/0x2d0
[ 1.214179] __x64_sys_sendmsg+0xef/0x140
[ 1.214184] do_syscall_64+0xec/0x1d0
[ 1.214190] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 1.214191] RIP: 0033:0x7f2d1b4a7e56
Device setup:
netdevsim0 (down)
^ ^
bond netdevsim1.100@netdevsim1 allmulticast=on (down)
When we enslave the lower device (netdevsim0) which has a vlan, we
propagate vlan's allmuti/promisc flags during ndo_open. This causes
(re)locking on of the real_dev.
Propagate allmulti/promisc on flags change, not on the open. There
is a slight semantics change that vlans that are down now propagate
the flags, but this seems unlikely to result in the real issues.
Reproducer:
echo 0 1 > /sys/bus/netdevsim/new_device
dev_path=$(ls -d /sys/bus/netdevsim/devices/netdevsim0/net/*)
dev=$(echo $dev_path | rev | cut -d/ -f1 | rev)
ip link set dev $dev name netdevsim0
ip link set dev netdevsim0 up
ip link add link netdevsim0 name netdevsim0.100 type vlan id 100
ip link set dev netdevsim0.100 allm
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
PCI: vmd: Make vmd_dev::cfg_lock a raw_spinlock_t type
The access to the PCI config space via pci_ops::read and pci_ops::write is
a low-level hardware access. The functions can be accessed with disabled
interrupts even on PREEMPT_RT. The pci_lock is a raw_spinlock_t for this
purpose.
A spinlock_t becomes a sleeping lock on PREEMPT_RT, so it cannot be
acquired with disabled interrupts. The vmd_dev::cfg_lock is accessed in
the same context as the pci_lock.
Make vmd_dev::cfg_lock a raw_spinlock_t type so it can be used with
interrupts disabled.
This was reported as:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
Call Trace:
rt_spin_lock+0x4e/0x130
vmd_pci_read+0x8d/0x100 [vmd]
pci_user_read_config_byte+0x6f/0xe0
pci_read_config+0xfe/0x290
sysfs_kf_bin_read+0x68/0x90
[bigeasy: reword commit message]
Tested-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
[kwilczynski: commit log]
[bhelgaas: add back report info from
https://lore.kernel.org/lkml/20241218115951.83062-1-ryotkkr98@gmail.com/]
In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: Fix a resource leak related to the scp device in FW initialization
On Mediatek devices with a system companion processor (SCP) the mtk_scp
structure has to be removed explicitly to avoid a resource leak.
Free the structure in case the allocation of the firmware structure fails
during the firmware initialization.
In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi: add a check to handle OOB in sfr region
sfr->buf_size is in shared memory and can be modified by malicious user.
OOB write is possible when the size is made higher than actual sfr data
buffer. Cap the size to allocated size for such cases.
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: Fix accessing freed irq affinity_hint
In stmmac_request_irq_multi_msi(), a pointer to the stack variable
cpu_mask is passed to irq_set_affinity_hint(). This value is stored in
irq_desc->affinity_hint, but once stmmac_request_irq_multi_msi()
returns, the pointer becomes dangling.
The affinity_hint is exposed via procfs with S_IRUGO permissions,
allowing any unprivileged process to read it. Accessing this stale
pointer can lead to:
- a kernel oops or panic if the referenced memory has been released and
unmapped, or
- leakage of kernel data into userspace if the memory is re-used for
other purposes.
All platforms that use stmmac with PCI MSI (Intel, Loongson, etc) are
affected.
In the Linux kernel, the following vulnerability has been resolved:
io_uring/net: fix io_req_post_cqe abuse by send bundle
[ 114.987980][ T5313] WARNING: CPU: 6 PID: 5313 at io_uring/io_uring.c:872 io_req_post_cqe+0x12e/0x4f0
[ 114.991597][ T5313] RIP: 0010:io_req_post_cqe+0x12e/0x4f0
[ 115.001880][ T5313] Call Trace:
[ 115.002222][ T5313] <TASK>
[ 115.007813][ T5313] io_send+0x4fe/0x10f0
[ 115.009317][ T5313] io_issue_sqe+0x1a6/0x1740
[ 115.012094][ T5313] io_wq_submit_work+0x38b/0xed0
[ 115.013223][ T5313] io_worker_handle_work+0x62a/0x1600
[ 115.013876][ T5313] io_wq_worker+0x34f/0xdf0
As the comment states, io_req_post_cqe() should only be used by
multishot requests, i.e. REQ_F_APOLL_MULTISHOT, which bundled sends are
not. Add a flag signifying whether a request wants to post multiple
CQEs. Eventually REQ_F_APOLL_MULTISHOT should imply the new flag, but
that's left out for simplicity.
In the Linux kernel, the following vulnerability has been resolved:
arm/crc-t10dif: fix use of out-of-scope array in crc_t10dif_arch()
Fix a silly bug where an array was used outside of its scope.
In the Linux kernel, the following vulnerability has been resolved:
arm64/crc-t10dif: fix use of out-of-scope array in crc_t10dif_arch()
Fix a silly bug where an array was used outside of its scope.
In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Fix race between unprepare and queue_buf
A client driver may use mhi_unprepare_from_transfer() to quiesce
incoming data during the client driver's tear down. The client driver
might also be processing data at the same time, resulting in a call to
mhi_queue_buf() which will invoke mhi_gen_tre(). If mhi_gen_tre() runs
after mhi_unprepare_from_transfer() has torn down the channel, a panic
will occur due to an invalid dereference leading to a page fault.
This occurs because mhi_gen_tre() does not verify the channel state
after locking it. Fix this by having mhi_gen_tre() confirm the channel
state is valid, or return error to avoid accessing deinitialized data.
[mani: added stable tag]
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one error in do_split
Syzkaller detected a use-after-free issue in ext4_insert_dentry that was
caused by out-of-bounds access due to incorrect splitting in do_split.
BUG: KASAN: use-after-free in ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
Write of size 251 at addr ffff888074572f14 by task syz-executor335/5847
CPU: 0 UID: 0 PID: 5847 Comm: syz-executor335 Not tainted 6.12.0-rc6-syzkaller-00318-ga9cda7c0ffed #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x40/0x70 mm/kasan/shadow.c:106
ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
add_dirent_to_buf+0x3d9/0x750 fs/ext4/namei.c:2154
make_indexed_dir+0xf98/0x1600 fs/ext4/namei.c:2351
ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2455
ext4_add_nondir+0x8d/0x290 fs/ext4/namei.c:2796
ext4_symlink+0x920/0xb50 fs/ext4/namei.c:3431
vfs_symlink+0x137/0x2e0 fs/namei.c:4615
do_symlinkat+0x222/0x3a0 fs/namei.c:4641
__do_sys_symlink fs/namei.c:4662 [inline]
__se_sys_symlink fs/namei.c:4660 [inline]
__x64_sys_symlink+0x7a/0x90 fs/namei.c:4660
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
The following loop is located right above 'if' statement.
for (i = count-1; i >= 0; i--) {
/* is more than half of this entry in 2nd half of the block? */
if (size + map[i].size/2 > blocksize/2)
break;
size += map[i].size;
move++;
}
'i' in this case could go down to -1, in which case sum of active entries
wouldn't exceed half the block size, but previous behaviour would also do
split in half if sum would exceed at the very last block, which in case of
having too many long name files in a single block could lead to
out-of-bounds access and following use-after-free.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
soc: samsung: exynos-chipid: Add NULL pointer check in exynos_chipid_probe()
soc_dev_attr->revision could be NULL, thus,
a pointer check is added to prevent potential NULL pointer dereference.
This is similar to the fix in commit 3027e7b15b02
("ice: Fix some null pointer dereference issues in ice_ptp.c").
This issue is found by our static analysis tool.
In the Linux kernel, the following vulnerability has been resolved:
i3c: Add NULL pointer check in i3c_master_queue_ibi()
The I3C master driver may receive an IBI from a target device that has not
been probed yet. In such cases, the master calls `i3c_master_queue_ibi()`
to queue an IBI work task, leading to "Unable to handle kernel read from
unreadable memory" and resulting in a kernel panic.
Typical IBI handling flow:
1. The I3C master scans target devices and probes their respective drivers.
2. The target device driver calls `i3c_device_request_ibi()` to enable IBI
and assigns `dev->ibi = ibi`.
3. The I3C master receives an IBI from the target device and calls
`i3c_master_queue_ibi()` to queue the target device driverβs IBI
handler task.
However, since target device events are asynchronous to the I3C probe
sequence, step 3 may occur before step 2, causing `dev->ibi` to be `NULL`,
leading to a kernel panic.
Add a NULL pointer check in `i3c_master_queue_ibi()` to prevent accessing
an uninitialized `dev->ibi`, ensuring stability.
In the Linux kernel, the following vulnerability has been resolved:
mfd: ene-kb3930: Fix a potential NULL pointer dereference
The off_gpios could be NULL. Add missing check in the kb3930_probe().
This is similar to the issue fixed in commit b1ba8bcb2d1f
("backlight: hx8357: Fix potential NULL pointer dereference").
This was detected by our static analysis tool.
In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix NULL pointer in can_accept_new_subflow
When testing valkey benchmark tool with MPTCP, the kernel panics in
'mptcp_can_accept_new_subflow' because subflow_req->msk is NULL.
Call trace:
mptcp_can_accept_new_subflow (./net/mptcp/subflow.c:63 (discriminator 4)) (P)
subflow_syn_recv_sock (./net/mptcp/subflow.c:854)
tcp_check_req (./net/ipv4/tcp_minisocks.c:863)
tcp_v4_rcv (./net/ipv4/tcp_ipv4.c:2268)
ip_protocol_deliver_rcu (./net/ipv4/ip_input.c:207)
ip_local_deliver_finish (./net/ipv4/ip_input.c:234)
ip_local_deliver (./net/ipv4/ip_input.c:254)
ip_rcv_finish (./net/ipv4/ip_input.c:449)
...
According to the debug log, the same req received two SYN-ACK in a very
short time, very likely because the client retransmits the syn ack due
to multiple reasons.
Even if the packets are transmitted with a relevant time interval, they
can be processed by the server on different CPUs concurrently). The
'subflow_req->msk' ownership is transferred to the subflow the first,
and there will be a risk of a null pointer dereference here.
This patch fixes this issue by moving the 'subflow_req->msk' under the
`own_req == true` conditional.
Note that the !msk check in subflow_hmac_valid() can be dropped, because
the same check already exists under the own_req mpj branch where the
code has been moved to.
In the Linux kernel, the following vulnerability has been resolved:
backlight: led_bl: Hold led_access lock when calling led_sysfs_disable()
Lockdep detects the following issue on led-backlight removal:
[ 142.315935] ------------[ cut here ]------------
[ 142.315954] WARNING: CPU: 2 PID: 292 at drivers/leds/led-core.c:455 led_sysfs_enable+0x54/0x80
...
[ 142.500725] Call trace:
[ 142.503176] led_sysfs_enable+0x54/0x80 (P)
[ 142.507370] led_bl_remove+0x80/0xa8 [led_bl]
[ 142.511742] platform_remove+0x30/0x58
[ 142.515501] device_remove+0x54/0x90
...
Indeed, led_sysfs_enable() has to be called with the led_access
lock held.
Hold the lock when calling led_sysfs_disable().
In the Linux kernel, the following vulnerability has been resolved:
net: Fix null-ptr-deref by sock_lock_init_class_and_name() and rmmod.
When I ran the repro [0] and waited a few seconds, I observed two
LOCKDEP splats: a warning immediately followed by a null-ptr-deref. [1]
Reproduction Steps:
1) Mount CIFS
2) Add an iptables rule to drop incoming FIN packets for CIFS
3) Unmount CIFS
4) Unload the CIFS module
5) Remove the iptables rule
At step 3), the CIFS module calls sock_release() for the underlying
TCP socket, and it returns quickly. However, the socket remains in
FIN_WAIT_1 because incoming FIN packets are dropped.
At this point, the module's refcnt is 0 while the socket is still
alive, so the following rmmod command succeeds.
# ss -tan
State Recv-Q Send-Q Local Address:Port Peer Address:Port
FIN-WAIT-1 0 477 10.0.2.15:51062 10.0.0.137:445
# lsmod | grep cifs
cifs 1159168 0
This highlights a discrepancy between the lifetime of the CIFS module
and the underlying TCP socket. Even after CIFS calls sock_release()
and it returns, the TCP socket does not die immediately in order to
close the connection gracefully.
While this is generally fine, it causes an issue with LOCKDEP because
CIFS assigns a different lock class to the TCP socket's sk->sk_lock
using sock_lock_init_class_and_name().
Once an incoming packet is processed for the socket or a timer fires,
sk->sk_lock is acquired.
Then, LOCKDEP checks the lock context in check_wait_context(), where
hlock_class() is called to retrieve the lock class. However, since
the module has already been unloaded, hlock_class() logs a warning
and returns NULL, triggering the null-ptr-deref.
If LOCKDEP is enabled, we must ensure that a module calling
sock_lock_init_class_and_name() (CIFS, NFS, etc) cannot be unloaded
while such a socket is still alive to prevent this issue.
Let's hold the module reference in sock_lock_init_class_and_name()
and release it when the socket is freed in sk_prot_free().
Note that sock_lock_init() clears sk->sk_owner for svc_create_socket()
that calls sock_lock_init_class_and_name() for a listening socket,
which clones a socket by sk_clone_lock() without GFP_ZERO.
[0]:
CIFS_SERVER="10.0.0.137"
CIFS_PATH="//${CIFS_SERVER}/Users/Administrator/Desktop/CIFS_TEST"
DEV="enp0s3"
CRED="/root/WindowsCredential.txt"
MNT=$(mktemp -d /tmp/XXXXXX)
mount -t cifs ${CIFS_PATH} ${MNT} -o vers=3.0,credentials=${CRED},cache=none,echo_interval=1
iptables -A INPUT -s ${CIFS_SERVER} -j DROP
for i in $(seq 10);
do
umount ${MNT}
rmmod cifs
sleep 1
done
rm -r ${MNT}
iptables -D INPUT -s ${CIFS_SERVER} -j DROP
[1]:
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 10 PID: 0 at kernel/locking/lockdep.c:234 hlock_class (kernel/locking/lockdep.c:234 kernel/locking/lockdep.c:223)
Modules linked in: cifs_arc4 nls_ucs2_utils cifs_md4 [last unloaded: cifs]
CPU: 10 UID: 0 PID: 0 Comm: swapper/10 Not tainted 6.14.0 #36
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:hlock_class (kernel/locking/lockdep.c:234 kernel/locking/lockdep.c:223)
...
Call Trace:
<IRQ>
__lock_acquire (kernel/locking/lockdep.c:4853 kernel/locking/lockdep.c:5178)
lock_acquire (kernel/locking/lockdep.c:469 kernel/locking/lockdep.c:5853 kernel/locking/lockdep.c:5816)
_raw_spin_lock_nested (kernel/locking/spinlock.c:379)
tcp_v4_rcv (./include/linux/skbuff.h:1678 ./include/net/tcp.h:2547 net/ipv4/tcp_ipv4.c:2350)
...
BUG: kernel NULL pointer dereference, address: 00000000000000c4
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 10 UID: 0 PID: 0 Comm: swapper/10 Tainted: G W 6.14.0 #36
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__lock_acquire (kernel/
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Acquire SRCU in KVM_GET_MP_STATE to protect guest memory accesses
Acquire a lock on kvm->srcu when userspace is getting MP state to handle a
rather extreme edge case where "accepting" APIC events, i.e. processing
pending INIT or SIPI, can trigger accesses to guest memory. If the vCPU
is in L2 with INIT *and* a TRIPLE_FAULT request pending, then getting MP
state will trigger a nested VM-Exit by way of ->check_nested_events(), and
emuating the nested VM-Exit can access guest memory.
The splat was originally hit by syzkaller on a Google-internal kernel, and
reproduced on an upstream kernel by hacking the triple_fault_event_test
selftest to stuff a pending INIT, store an MSR on VM-Exit (to generate a
memory access on VMX), and do vcpu_mp_state_get() to trigger the scenario.
=============================
WARNING: suspicious RCU usage
6.14.0-rc3-b112d356288b-vmx/pi_lockdep_false_pos-lock #3 Not tainted
-----------------------------
include/linux/kvm_host.h:1058 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by triple_fault_ev/1256:
#0: ffff88810df5a330 (&vcpu->mutex){+.+.}-{4:4}, at: kvm_vcpu_ioctl+0x8b/0x9a0 [kvm]
stack backtrace:
CPU: 11 UID: 1000 PID: 1256 Comm: triple_fault_ev Not tainted 6.14.0-rc3-b112d356288b-vmx #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x7f/0x90
lockdep_rcu_suspicious+0x144/0x190
kvm_vcpu_gfn_to_memslot+0x156/0x180 [kvm]
kvm_vcpu_read_guest+0x3e/0x90 [kvm]
read_and_check_msr_entry+0x2e/0x180 [kvm_intel]
__nested_vmx_vmexit+0x550/0xde0 [kvm_intel]
kvm_check_nested_events+0x1b/0x30 [kvm]
kvm_apic_accept_events+0x33/0x100 [kvm]
kvm_arch_vcpu_ioctl_get_mpstate+0x30/0x1d0 [kvm]
kvm_vcpu_ioctl+0x33e/0x9a0 [kvm]
__x64_sys_ioctl+0x8b/0xb0
do_syscall_64+0x6c/0x170
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
misc: pci_endpoint_test: Avoid issue of interrupts remaining after request_irq error
After devm_request_irq() fails with error in pci_endpoint_test_request_irq(),
the pci_endpoint_test_free_irq_vectors() is called assuming that all IRQs
have been released.
However, some requested IRQs remain unreleased, so there are still
/proc/irq/* entries remaining, and this results in WARN() with the
following message:
remove_proc_entry: removing non-empty directory 'irq/30', leaking at least 'pci-endpoint-test.0'
WARNING: CPU: 0 PID: 202 at fs/proc/generic.c:719 remove_proc_entry +0x190/0x19c
To solve this issue, set the number of remaining IRQs to test->num_irqs,
and release IRQs in advance by calling pci_endpoint_test_release_irq().
[kwilczynski: commit log]
Exposure of sensitive information to local unauthorized actors in Elastic Agent and Elastic Security Endpoint can lead to loss of confidentiality and impersonation of Endpoint to the Elastic Stack. This issue was identified by Elastic engineers and Elastic has no indication that it is known or has been exploited by malicious actors.
Improper sanitization of the value of the 'href' and 'xlink:href' attributes in '<image>' SVG elements in AngularJS allows attackers to bypass common image source restrictions. This can lead to a form of Content Spoofing https://owasp.org/www-community/attacks/Content_Spoofing Β and also negatively affect the application's performance and behavior by using too large or slow-to-load images.
This issue affects all versions of AngularJS.
Note:
The AngularJS project is End-of-Life and will not receive any updates to address this issue. For more information see here https://docs.angularjs.org/misc/version-support-status .
A vulnerability classified as critical was found in code-projects Simple Movie Ticket Booking System 1.0. Affected by this vulnerability is the function changeprize. The manipulation of the argument prize leads to stack-based buffer overflow. The attack needs to be approached locally. The exploit has been disclosed to the public and may be used.
Reflected Cross-Site Scripting (XSS) vulnerability in Bookgy. This vulnerability allows an attacker to execute JavaScript code in the victim's browser by sending a malicious URL through the "IDRESERVA" parameter in /bkg_imprimir_comprobante.php.
Reflected Cross-Site Scripting (XSS) vulnerability in Bookgy. This vulnerability allows an attacker to execute JavaScript code in the victim's browser by sending a malicious URL through the "TEXTO" parameter in /api/api_ajustes.php.
A vulnerability was identified in Thunderbird where XPath parsing could trigger undefined behavior due to missing null checks during attribute access. This could lead to out-of-bounds read access and potentially, memory corruption. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Thunderbird < 138, and Thunderbird < 128.10.
Due to insufficient escaping of the special characters in the "copy as cURL" feature, an attacker could trick a user into using this command, potentially leading to local code execution on the user's system.
*This bug only affects Firefox for Windows. Other versions of Firefox are unaffected.* This vulnerability affects Firefox ESR < 128.10, Firefox ESR < 115.23, and Thunderbird < 128.10.
Modification of specific WebGL shader attributes could trigger an out-of-bounds read, which, when chained with other vulnerabilities, could be used to escalate privileges.
*This bug only affects Thunderbird for macOS. Other versions of Thunderbird are unaffected.* This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Firefox ESR < 115.23, Thunderbird < 138, and Thunderbird < 128.10.
In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: Fix packet corruption in vmxnet3_xdp_xmit_frame
Andrew and Nikolay reported connectivity issues with Cilium's service
load-balancing in case of vmxnet3.
If a BPF program for native XDP adds an encapsulation header such as
IPIP and transmits the packet out the same interface, then in case
of vmxnet3 a corrupted packet is being sent and subsequently dropped
on the path.
vmxnet3_xdp_xmit_frame() which is called e.g. via vmxnet3_run_xdp()
through vmxnet3_xdp_xmit_back() calculates an incorrect DMA address:
page = virt_to_page(xdpf->data);
tbi->dma_addr = page_pool_get_dma_addr(page) +
VMXNET3_XDP_HEADROOM;
dma_sync_single_for_device(&adapter->pdev->dev,
tbi->dma_addr, buf_size,
DMA_TO_DEVICE);
The above assumes a fixed offset (VMXNET3_XDP_HEADROOM), but the XDP
BPF program could have moved xdp->data. While the passed buf_size is
correct (xdpf->len), the dma_addr needs to have a dynamic offset which
can be calculated as xdpf->data - (void *)xdpf, that is, xdp->data -
xdp->data_hard_start.
A vulnerability was found in code-projects ATM Banking 1.0. It has been classified as critical. Affected is the function moneyDeposit/moneyWithdraw. The manipulation leads to business logic errors. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used.