In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: handle errors in mlx5_chains_create_table()
In mlx5_chains_create_table(), the return value of mlx5_get_fdb_sub_ns()
and mlx5_get_flow_namespace() must be checked to prevent NULL pointer
dereferences. If either function fails, the function should log error
message with mlx5_core_warn() and return error pointer.
In the Linux kernel, the following vulnerability has been resolved:
net: mctp: unshare packets when reassembling
Ensure that the frag_list used for reassembly isn't shared with other
packets. This avoids incorrect reassembly when packets are cloned, and
prevents a memory leak due to circular references between fragments and
their skb_shared_info.
The upcoming MCTP-over-USB driver uses skb_clone which can trigger the
problem - other MCTP drivers don't share SKBs.
A kunit test is added to reproduce the issue.
In the Linux kernel, the following vulnerability has been resolved:
net_sched: Prevent creation of classes with TC_H_ROOT
The function qdisc_tree_reduce_backlog() uses TC_H_ROOT as a termination
condition when traversing up the qdisc tree to update parent backlog
counters. However, if a class is created with classid TC_H_ROOT, the
traversal terminates prematurely at this class instead of reaching the
actual root qdisc, causing parent statistics to be incorrectly maintained.
In case of DRR, this could lead to a crash as reported by Mingi Cho.
Prevent the creation of any Qdisc class with classid TC_H_ROOT
(0xFFFFFFFF) across all qdisc types, as suggested by Jamal.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Bridge, fix the crash caused by LAG state check
When removing LAG device from bridge, NETDEV_CHANGEUPPER event is
triggered. Driver finds the lower devices (PFs) to flush all the
offloaded entries. And mlx5_lag_is_shared_fdb is checked, it returns
false if one of PF is unloaded. In such case,
mlx5_esw_bridge_lag_rep_get() and its caller return NULL, instead of
the alive PF, and the flush is skipped.
Besides, the bridge fdb entry's lastuse is updated in mlx5 bridge
event handler. But this SWITCHDEV_FDB_ADD_TO_BRIDGE event can be
ignored in this case because the upper interface for bond is deleted,
and the entry will never be aged because lastuse is never updated.
To make things worse, as the entry is alive, mlx5 bridge workqueue
keeps sending that event, which is then handled by kernel bridge
notifier. It causes the following crash when accessing the passed bond
netdev which is already destroyed.
To fix this issue, remove such checks. LAG state is already checked in
commit 15f8f168952f ("net/mlx5: Bridge, verify LAG state when adding
bond to bridge"), driver still need to skip offload if LAG becomes
invalid state after initialization.
Oops: stack segment: 0000 [#1] SMP
CPU: 3 UID: 0 PID: 23695 Comm: kworker/u40:3 Tainted: G OE 6.11.0_mlnx #1
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Workqueue: mlx5_bridge_wq mlx5_esw_bridge_update_work [mlx5_core]
RIP: 0010:br_switchdev_event+0x2c/0x110 [bridge]
Code: 44 00 00 48 8b 02 48 f7 00 00 02 00 00 74 69 41 54 55 53 48 83 ec 08 48 8b a8 08 01 00 00 48 85 ed 74 4a 48 83 fe 02 48 89 d3 <4c> 8b 65 00 74 23 76 49 48 83 fe 05 74 7e 48 83 fe 06 75 2f 0f b7
RSP: 0018:ffffc900092cfda0 EFLAGS: 00010297
RAX: ffff888123bfe000 RBX: ffffc900092cfe08 RCX: 00000000ffffffff
RDX: ffffc900092cfe08 RSI: 0000000000000001 RDI: ffffffffa0c585f0
RBP: 6669746f6e690a30 R08: 0000000000000000 R09: ffff888123ae92c8
R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888123ae9c60
R13: 0000000000000001 R14: ffffc900092cfe08 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88852c980000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f15914c8734 CR3: 0000000002830005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __die_body+0x1a/0x60
? die+0x38/0x60
? do_trap+0x10b/0x120
? do_error_trap+0x64/0xa0
? exc_stack_segment+0x33/0x50
? asm_exc_stack_segment+0x22/0x30
? br_switchdev_event+0x2c/0x110 [bridge]
? sched_balance_newidle.isra.149+0x248/0x390
notifier_call_chain+0x4b/0xa0
atomic_notifier_call_chain+0x16/0x20
mlx5_esw_bridge_update+0xec/0x170 [mlx5_core]
mlx5_esw_bridge_update_work+0x19/0x40 [mlx5_core]
process_scheduled_works+0x81/0x390
worker_thread+0x106/0x250
? bh_worker+0x110/0x110
kthread+0xb7/0xe0
? kthread_park+0x80/0x80
ret_from_fork+0x2d/0x50
? kthread_park+0x80/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Validate prev_cpu in scx_bpf_select_cpu_dfl()
If a BPF scheduler provides an invalid CPU (outside the nr_cpu_ids
range) as prev_cpu to scx_bpf_select_cpu_dfl() it can cause a kernel
crash.
To prevent this, validate prev_cpu in scx_bpf_select_cpu_dfl() and
trigger an scx error if an invalid CPU is specified.
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix integer overflow while processing acregmax mount option
User-provided mount parameter acregmax of type u32 is intended to have
an upper limit, but before it is validated, the value is converted from
seconds to jiffies which can lead to an integer overflow.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix integer overflow while processing acdirmax mount option
User-provided mount parameter acdirmax of type u32 is intended to have
an upper limit, but before it is validated, the value is converted from
seconds to jiffies which can lead to an integer overflow.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix integer overflow while processing closetimeo mount option
User-provided mount parameter closetimeo of type u32 is intended to have
an upper limit, but before it is validated, the value is converted from
seconds to jiffies which can lead to an integer overflow.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: fix truesize for mb-xdp-pass case
When mb-xdp is set and return is XDP_PASS, packet is converted from
xdp_buff to sk_buff with xdp_update_skb_shared_info() in
bnxt_xdp_build_skb().
bnxt_xdp_build_skb() passes incorrect truesize argument to
xdp_update_skb_shared_info().
The truesize is calculated as BNXT_RX_PAGE_SIZE * sinfo->nr_frags but
the skb_shared_info was wiped by napi_build_skb() before.
So it stores sinfo->nr_frags before bnxt_xdp_build_skb() and use it
instead of getting skb_shared_info from xdp_get_shared_info_from_buff().
Splat looks like:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 0 at net/core/skbuff.c:6072 skb_try_coalesce+0x504/0x590
Modules linked in: xt_nat xt_tcpudp veth af_packet xt_conntrack nft_chain_nat xt_MASQUERADE nf_conntrack_netlink xfrm_user xt_addrtype nft_coms
CPU: 2 UID: 0 PID: 0 Comm: swapper/2 Not tainted 6.14.0-rc2+ #3
RIP: 0010:skb_try_coalesce+0x504/0x590
Code: 4b fd ff ff 49 8b 34 24 40 80 e6 40 0f 84 3d fd ff ff 49 8b 74 24 48 40 f6 c6 01 0f 84 2e fd ff ff 48 8d 4e ff e9 25 fd ff ff <0f> 0b e99
RSP: 0018:ffffb62c4120caa8 EFLAGS: 00010287
RAX: 0000000000000003 RBX: ffffb62c4120cb14 RCX: 0000000000000ec0
RDX: 0000000000001000 RSI: ffffa06e5d7dc000 RDI: 0000000000000003
RBP: ffffa06e5d7ddec0 R08: ffffa06e6120a800 R09: ffffa06e7a119900
R10: 0000000000002310 R11: ffffa06e5d7dcec0 R12: ffffe4360575f740
R13: ffffe43600000000 R14: 0000000000000002 R15: 0000000000000002
FS: 0000000000000000(0000) GS:ffffa0755f700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f147b76b0f8 CR3: 00000001615d4000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<IRQ>
? __warn+0x84/0x130
? skb_try_coalesce+0x504/0x590
? report_bug+0x18a/0x1a0
? handle_bug+0x53/0x90
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? skb_try_coalesce+0x504/0x590
inet_frag_reasm_finish+0x11f/0x2e0
ip_defrag+0x37a/0x900
ip_local_deliver+0x51/0x120
ip_sublist_rcv_finish+0x64/0x70
ip_sublist_rcv+0x179/0x210
ip_list_rcv+0xf9/0x130
How to reproduce:
<Node A>
ip link set $interface1 xdp obj xdp_pass.o
ip link set $interface1 mtu 9000 up
ip a a 10.0.0.1/24 dev $interface1
<Node B>
ip link set $interfac2 mtu 9000 up
ip a a 10.0.0.2/24 dev $interface2
ping 10.0.0.1 -s 65000
Following ping.py patch adds xdp-mb-pass case. so ping.py is going to be
able to reproduce this issue.
In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: do not update checksum in bnxt_xdp_build_skb()
The bnxt_rx_pkt() updates ip_summed value at the end if checksum offload
is enabled.
When the XDP-MB program is attached and it returns XDP_PASS, the
bnxt_xdp_build_skb() is called to update skb_shared_info.
The main purpose of bnxt_xdp_build_skb() is to update skb_shared_info,
but it updates ip_summed value too if checksum offload is enabled.
This is actually duplicate work.
When the bnxt_rx_pkt() updates ip_summed value, it checks if ip_summed
is CHECKSUM_NONE or not.
It means that ip_summed should be CHECKSUM_NONE at this moment.
But ip_summed may already be updated to CHECKSUM_UNNECESSARY in the
XDP-MB-PASS path.
So the by skb_checksum_none_assert() WARNS about it.
This is duplicate work and updating ip_summed in the
bnxt_xdp_build_skb() is not needed.
Splat looks like:
WARNING: CPU: 3 PID: 5782 at ./include/linux/skbuff.h:5155 bnxt_rx_pkt+0x479b/0x7610 [bnxt_en]
Modules linked in: bnxt_re bnxt_en rdma_ucm rdma_cm iw_cm ib_cm ib_uverbs veth xt_nat xt_tcpudp xt_conntrack nft_chain_nat xt_MASQUERADE nf_]
CPU: 3 UID: 0 PID: 5782 Comm: socat Tainted: G W 6.14.0-rc4+ #27
Tainted: [W]=WARN
Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021
RIP: 0010:bnxt_rx_pkt+0x479b/0x7610 [bnxt_en]
Code: 54 24 0c 4c 89 f1 4c 89 ff c1 ea 1f ff d3 0f 1f 00 49 89 c6 48 85 c0 0f 84 4c e5 ff ff 48 89 c7 e8 ca 3d a0 c8 e9 8f f4 ff ff <0f> 0b f
RSP: 0018:ffff88881ba09928 EFLAGS: 00010202
RAX: 0000000000000000 RBX: 00000000c7590303 RCX: 0000000000000000
RDX: 1ffff1104e7d1610 RSI: 0000000000000001 RDI: ffff8881c91300b8
RBP: ffff88881ba09b28 R08: ffff888273e8b0d0 R09: ffff888273e8b070
R10: ffff888273e8b010 R11: ffff888278b0f000 R12: ffff888273e8b080
R13: ffff8881c9130e00 R14: ffff8881505d3800 R15: ffff888273e8b000
FS: 00007f5a2e7be080(0000) GS:ffff88881ba00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fff2e708ff8 CR3: 000000013e3b0000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<IRQ>
? __warn+0xcd/0x2f0
? bnxt_rx_pkt+0x479b/0x7610
? report_bug+0x326/0x3c0
? handle_bug+0x53/0xa0
? exc_invalid_op+0x14/0x50
? asm_exc_invalid_op+0x16/0x20
? bnxt_rx_pkt+0x479b/0x7610
? bnxt_rx_pkt+0x3e41/0x7610
? __pfx_bnxt_rx_pkt+0x10/0x10
? napi_complete_done+0x2cf/0x7d0
__bnxt_poll_work+0x4e8/0x1220
? __pfx___bnxt_poll_work+0x10/0x10
? __pfx_mark_lock.part.0+0x10/0x10
bnxt_poll_p5+0x36a/0xfa0
? __pfx_bnxt_poll_p5+0x10/0x10
__napi_poll.constprop.0+0xa0/0x440
net_rx_action+0x899/0xd00
...
Following ping.py patch adds xdp-mb-pass case. so ping.py is going
to be able to reproduce this issue.
In the Linux kernel, the following vulnerability has been resolved:
Revert "openvswitch: switch to per-action label counting in conntrack"
Currently, ovs_ct_set_labels() is only called for confirmed conntrack
entries (ct) within ovs_ct_commit(). However, if the conntrack entry
does not have the labels_ext extension, attempting to allocate it in
ovs_ct_get_conn_labels() for a confirmed entry triggers a warning in
nf_ct_ext_add():
WARN_ON(nf_ct_is_confirmed(ct));
This happens when the conntrack entry is created externally before OVS
increments net->ct.labels_used. The issue has become more likely since
commit fcb1aa5163b1 ("openvswitch: switch to per-action label counting
in conntrack"), which changed to use per-action label counting and
increment net->ct.labels_used when a flow with ct action is added.
Since there’s no straightforward way to fully resolve this issue at the
moment, this reverts the commit to avoid breaking existing use cases.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla1280: Fix kernel oops when debug level > 2
A null dereference or oops exception will eventually occur when qla1280.c
driver is compiled with DEBUG_QLA1280 enabled and ql_debug_level > 2. I
think its clear from the code that the intention here is sg_dma_len(s) not
length of sg_next(s) when printing the debug info.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Assign normalized_pix_clk when color depth = 14
[WHY & HOW]
A warning message "WARNING: CPU: 4 PID: 459 at ... /dc_resource.c:3397
calculate_phy_pix_clks+0xef/0x100 [amdgpu]" occurs because the
display_color_depth == COLOR_DEPTH_141414 is not handled. This is
observed in Radeon RX 6600 XT.
It is fixed by assigning pix_clk * (14 * 3) / 24 - same as the rests.
Also fixes the indentation in get_norm_pix_clk.
(cherry picked from commit 274a87eb389f58eddcbc5659ab0b180b37e92775)
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: prevent connection release during oplock break notification
ksmbd_work could be freed when after connection release.
Increment r_count of ksmbd_conn to indicate that requests
are not finished yet and to not release the connection.
In the Linux kernel, the following vulnerability has been resolved:
netmem: prevent TX of unreadable skbs
Currently on stable trees we have support for netmem/devmem RX but not
TX. It is not safe to forward/redirect an RX unreadable netmem packet
into the device's TX path, as the device may call dma-mapping APIs on
dma addrs that should not be passed to it.
Fix this by preventing the xmit of unreadable skbs.
Tested by configuring tc redirect:
sudo tc qdisc add dev eth1 ingress
sudo tc filter add dev eth1 ingress protocol ip prio 1 flower ip_proto \
tcp src_ip 192.168.1.12 action mirred egress redirect dev eth1
Before, I see unreadable skbs in the driver's TX path passed to dma
mapping APIs.
After, I don't see unreadable skbs in the driver's TX path passed to dma
mapping APIs.
In the Linux kernel, the following vulnerability has been resolved:
HID: corsair-void: Update power supply values with a unified work handler
corsair_void_process_receiver can be called from an interrupt context,
locking battery_mutex in it was causing a kernel panic.
Fix it by moving the critical section into its own work, sharing this
work with battery_add_work and battery_remove_work to remove the need
for any locking
In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: pci_generic: Use pci_try_reset_function() to avoid deadlock
There are multiple places from where the recovery work gets scheduled
asynchronously. Also, there are multiple places where the caller waits
synchronously for the recovery to be completed. One such place is during
the PM shutdown() callback.
If the device is not alive during recovery_work, it will try to reset the
device using pci_reset_function(). This function internally will take the
device_lock() first before resetting the device. By this time, if the lock
has already been acquired, then recovery_work will get stalled while
waiting for the lock. And if the lock was already acquired by the caller
which waits for the recovery_work to be completed, it will lead to
deadlock.
This is what happened on the X1E80100 CRD device when the device died
before shutdown() callback. Driver core calls the driver's shutdown()
callback while holding the device_lock() leading to deadlock.
And this deadlock scenario can occur on other paths as well, like during
the PM suspend() callback, where the driver core would hold the
device_lock() before calling driver's suspend() callback. And if the
recovery_work was already started, it could lead to deadlock. This is also
observed on the X1E80100 CRD.
So to fix both issues, use pci_try_reset_function() in recovery_work. This
function first checks for the availability of the device_lock() before
trying to reset the device. If the lock is available, it will acquire it
and reset the device. Otherwise, it will return -EAGAIN. If that happens,
recovery_work will fail with the error message "Recovery failed" as not
much could be done.
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Set hugetlb mmap base address aligned with pmd size
With ltp test case "testcases/bin/hugefork02", there is a dmesg error
report message such as:
kernel BUG at mm/hugetlb.c:5550!
Oops - BUG[#1]:
CPU: 0 UID: 0 PID: 1517 Comm: hugefork02 Not tainted 6.14.0-rc2+ #241
Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022
pc 90000000004eaf1c ra 9000000000485538 tp 900000010edbc000 sp 900000010edbf940
a0 900000010edbfb00 a1 9000000108d20280 a2 00007fffe9474000 a3 00007ffff3474000
a4 0000000000000000 a5 0000000000000003 a6 00000000003cadd3 a7 0000000000000000
t0 0000000001ffffff t1 0000000001474000 t2 900000010ecd7900 t3 00007fffe9474000
t4 00007fffe9474000 t5 0000000000000040 t6 900000010edbfb00 t7 0000000000000001
t8 0000000000000005 u0 90000000004849d0 s9 900000010edbfa00 s0 9000000108d20280
s1 00007fffe9474000 s2 0000000002000000 s3 9000000108d20280 s4 9000000002b38b10
s5 900000010edbfb00 s6 00007ffff3474000 s7 0000000000000406 s8 900000010edbfa08
ra: 9000000000485538 unmap_vmas+0x130/0x218
ERA: 90000000004eaf1c __unmap_hugepage_range+0x6f4/0x7d0
PRMD: 00000004 (PPLV0 +PIE -PWE)
EUEN: 00000007 (+FPE +SXE +ASXE -BTE)
ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7)
ESTAT: 000c0000 [BRK] (IS= ECode=12 EsubCode=0)
PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)
Process hugefork02 (pid: 1517, threadinfo=00000000a670eaf4, task=000000007a95fc64)
Call Trace:
[<90000000004eaf1c>] __unmap_hugepage_range+0x6f4/0x7d0
[<9000000000485534>] unmap_vmas+0x12c/0x218
[<9000000000494068>] exit_mmap+0xe0/0x308
[<900000000025fdc4>] mmput+0x74/0x180
[<900000000026a284>] do_exit+0x294/0x898
[<900000000026aa30>] do_group_exit+0x30/0x98
[<900000000027bed4>] get_signal+0x83c/0x868
[<90000000002457b4>] arch_do_signal_or_restart+0x54/0xfa0
[<90000000015795e8>] irqentry_exit_to_user_mode+0xb8/0x138
[<90000000002572d0>] tlb_do_page_fault_1+0x114/0x1b4
The problem is that base address allocated from hugetlbfs is not aligned
with pmd size. Here add a checking for hugetlbfs and align base address
with pmd size. After this patch the test case "testcases/bin/hugefork02"
passes to run.
This is similar to the commit 7f24cbc9c4d42db8a3c8484d1 ("mm/mmap: teach
generic_get_unmapped_area{_topdown} to handle hugetlb mappings").
In the Linux kernel, the following vulnerability has been resolved:
HID: appleir: Fix potential NULL dereference at raw event handle
Syzkaller reports a NULL pointer dereference issue in input_event().
BUG: KASAN: null-ptr-deref in instrument_atomic_read include/linux/instrumented.h:68 [inline]
BUG: KASAN: null-ptr-deref in _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
BUG: KASAN: null-ptr-deref in is_event_supported drivers/input/input.c:67 [inline]
BUG: KASAN: null-ptr-deref in input_event+0x42/0xa0 drivers/input/input.c:395
Read of size 8 at addr 0000000000000028 by task syz-executor199/2949
CPU: 0 UID: 0 PID: 2949 Comm: syz-executor199 Not tainted 6.13.0-rc4-syzkaller-00076-gf097a36ef88d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
kasan_report+0xd9/0x110 mm/kasan/report.c:602
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
instrument_atomic_read include/linux/instrumented.h:68 [inline]
_test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
is_event_supported drivers/input/input.c:67 [inline]
input_event+0x42/0xa0 drivers/input/input.c:395
input_report_key include/linux/input.h:439 [inline]
key_down drivers/hid/hid-appleir.c:159 [inline]
appleir_raw_event+0x3e5/0x5e0 drivers/hid/hid-appleir.c:232
__hid_input_report.constprop.0+0x312/0x440 drivers/hid/hid-core.c:2111
hid_ctrl+0x49f/0x550 drivers/hid/usbhid/hid-core.c:484
__usb_hcd_giveback_urb+0x389/0x6e0 drivers/usb/core/hcd.c:1650
usb_hcd_giveback_urb+0x396/0x450 drivers/usb/core/hcd.c:1734
dummy_timer+0x17f7/0x3960 drivers/usb/gadget/udc/dummy_hcd.c:1993
__run_hrtimer kernel/time/hrtimer.c:1739 [inline]
__hrtimer_run_queues+0x20a/0xae0 kernel/time/hrtimer.c:1803
hrtimer_run_softirq+0x17d/0x350 kernel/time/hrtimer.c:1820
handle_softirqs+0x206/0x8d0 kernel/softirq.c:561
__do_softirq kernel/softirq.c:595 [inline]
invoke_softirq kernel/softirq.c:435 [inline]
__irq_exit_rcu+0xfa/0x160 kernel/softirq.c:662
irq_exit_rcu+0x9/0x30 kernel/softirq.c:678
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0x90/0xb0 arch/x86/kernel/apic/apic.c:1049
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702
__mod_timer+0x8f6/0xdc0 kernel/time/timer.c:1185
add_timer+0x62/0x90 kernel/time/timer.c:1295
schedule_timeout+0x11f/0x280 kernel/time/sleep_timeout.c:98
usbhid_wait_io+0x1c7/0x380 drivers/hid/usbhid/hid-core.c:645
usbhid_init_reports+0x19f/0x390 drivers/hid/usbhid/hid-core.c:784
hiddev_ioctl+0x1133/0x15b0 drivers/hid/usbhid/hiddev.c:794
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl fs/ioctl.c:892 [inline]
__x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This happens due to the malformed report items sent by the emulated device
which results in a report, that has no fields, being added to the report list.
Due to this appleir_input_configured() is never called, hidinput_connect()
fails which results in the HID_CLAIMED_INPUT flag is not being set. However,
it does not make appleir_probe() fail and lets the event callback to be
called without the associated input device.
Thus, add a check for the HID_CLAIMED_INPUT flag and leave the event hook
early if the driver didn't claim any input_dev for some reason. Moreover,
some other hid drivers accessing input_dev in their event callbacks do have
similar checks, too.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix type confusion via race condition when using ipc_msg_send_request
req->handle is allocated using ksmbd_acquire_id(&ipc_ida), based on
ida_alloc. req->handle from ksmbd_ipc_login_request and
FSCTL_PIPE_TRANSCEIVE ioctl can be same and it could lead to type confusion
between messages, resulting in access to unexpected parts of memory after
an incorrect delivery. ksmbd check type of ipc response but missing add
continue to check next ipc reponse.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix bug on trap in smb2_lock
If lock count is greater than 1, flags could be old value.
It should be checked with flags of smb_lock, not flags.
It will cause bug-on trap from locks_free_lock in error handling
routine.
In the Linux kernel, the following vulnerability has been resolved:
gpio: aggregator: protect driver attr handlers against module unload
Both new_device_store and delete_device_store touch module global
resources (e.g. gpio_aggregator_lock). To prevent race conditions with
module unload, a reference needs to be held.
Add try_module_get() in these handlers.
For new_device_store, this eliminates what appears to be the most dangerous
scenario: if an id is allocated from gpio_aggregator_idr but
platform_device_register has not yet been called or completed, a concurrent
module unload could fail to unregister/delete the device, leaving behind a
dangling platform device/GPIO forwarder. This can result in various issues.
The following simple reproducer demonstrates these problems:
#!/bin/bash
while :; do
# note: whether 'gpiochip0 0' exists or not does not matter.
echo 'gpiochip0 0' > /sys/bus/platform/drivers/gpio-aggregator/new_device
done &
while :; do
modprobe gpio-aggregator
modprobe -r gpio-aggregator
done &
wait
Starting with the following warning, several kinds of warnings will appear
and the system may become unstable:
------------[ cut here ]------------
list_del corruption, ffff888103e2e980->next is LIST_POISON1 (dead000000000100)
WARNING: CPU: 1 PID: 1327 at lib/list_debug.c:56 __list_del_entry_valid_or_report+0xa3/0x120
[...]
RIP: 0010:__list_del_entry_valid_or_report+0xa3/0x120
[...]
Call Trace:
<TASK>
? __list_del_entry_valid_or_report+0xa3/0x120
? __warn.cold+0x93/0xf2
? __list_del_entry_valid_or_report+0xa3/0x120
? report_bug+0xe6/0x170
? __irq_work_queue_local+0x39/0xe0
? handle_bug+0x58/0x90
? exc_invalid_op+0x13/0x60
? asm_exc_invalid_op+0x16/0x20
? __list_del_entry_valid_or_report+0xa3/0x120
gpiod_remove_lookup_table+0x22/0x60
new_device_store+0x315/0x350 [gpio_aggregator]
kernfs_fop_write_iter+0x137/0x1f0
vfs_write+0x262/0x430
ksys_write+0x60/0xd0
do_syscall_64+0x6c/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
</TASK>
---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: fix extent range end unlock in cow_file_range()
Running generic/751 on the for-next branch often results in a hang like
below. They are both stack by locking an extent. This suggests someone
forget to unlock an extent.
INFO: task kworker/u128:1:12 blocked for more than 323 seconds.
Not tainted 6.13.0-BTRFS-ZNS+ #503
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u128:1 state:D stack:0 pid:12 tgid:12 ppid:2 flags:0x00004000
Workqueue: btrfs-fixup btrfs_work_helper [btrfs]
Call Trace:
<TASK>
__schedule+0x534/0xdd0
schedule+0x39/0x140
__lock_extent+0x31b/0x380 [btrfs]
? __pfx_autoremove_wake_function+0x10/0x10
btrfs_writepage_fixup_worker+0xf1/0x3a0 [btrfs]
btrfs_work_helper+0xff/0x480 [btrfs]
? lock_release+0x178/0x2c0
process_one_work+0x1ee/0x570
? srso_return_thunk+0x5/0x5f
worker_thread+0x1d1/0x3b0
? __pfx_worker_thread+0x10/0x10
kthread+0x10b/0x230
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
INFO: task kworker/u134:0:184 blocked for more than 323 seconds.
Not tainted 6.13.0-BTRFS-ZNS+ #503
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u134:0 state:D stack:0 pid:184 tgid:184 ppid:2 flags:0x00004000
Workqueue: writeback wb_workfn (flush-btrfs-4)
Call Trace:
<TASK>
__schedule+0x534/0xdd0
schedule+0x39/0x140
__lock_extent+0x31b/0x380 [btrfs]
? __pfx_autoremove_wake_function+0x10/0x10
find_lock_delalloc_range+0xdb/0x260 [btrfs]
writepage_delalloc+0x12f/0x500 [btrfs]
? srso_return_thunk+0x5/0x5f
extent_write_cache_pages+0x232/0x840 [btrfs]
btrfs_writepages+0x72/0x130 [btrfs]
do_writepages+0xe7/0x260
? srso_return_thunk+0x5/0x5f
? lock_acquire+0xd2/0x300
? srso_return_thunk+0x5/0x5f
? find_held_lock+0x2b/0x80
? wbc_attach_and_unlock_inode.part.0+0x102/0x250
? wbc_attach_and_unlock_inode.part.0+0x102/0x250
__writeback_single_inode+0x5c/0x4b0
writeback_sb_inodes+0x22d/0x550
__writeback_inodes_wb+0x4c/0xe0
wb_writeback+0x2f6/0x3f0
wb_workfn+0x32a/0x510
process_one_work+0x1ee/0x570
? srso_return_thunk+0x5/0x5f
worker_thread+0x1d1/0x3b0
? __pfx_worker_thread+0x10/0x10
kthread+0x10b/0x230
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
This happens because we have another success path for the zoned mode. When
there is no active zone available, btrfs_reserve_extent() returns
-EAGAIN. In this case, we have two reactions.
(1) If the given range is never allocated, we can only wait for someone
to finish a zone, so wait on BTRFS_FS_NEED_ZONE_FINISH bit and retry
afterward.
(2) Or, if some allocations are already done, we must bail out and let
the caller to send IOs for the allocation. This is because these IOs
may be necessary to finish a zone.
The commit 06f364284794 ("btrfs: do proper folio cleanup when
cow_file_range() failed") moved the unlock code from the inside of the
loop to the outside. So, previously, the allocated extents are unlocked
just after the allocation and so before returning from the function.
However, they are no longer unlocked on the case (2) above. That caused
the hang issue.
Fix the issue by modifying the 'end' to the end of the allocated
range. Then, we can exit the loop and the same unlock code can properly
handle the case.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix null check for pipe_ctx->plane_state in resource_build_scaling_params
Null pointer dereference issue could occur when pipe_ctx->plane_state
is null. The fix adds a check to ensure 'pipe_ctx->plane_state' is not
null before accessing. This prevents a null pointer dereference.
Found by code review.
(cherry picked from commit 63e6a77ccf239337baa9b1e7787cde9fa0462092)
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix NULL Pointer Dereference in KFD queue
Through KFD IOCTL Fuzzing we encountered a NULL pointer derefrence
when calling kfd_queue_acquire_buffers.
(cherry picked from commit 049e5bf3c8406f87c3d8e1958e0a16804fa1d530)
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/hmm: Don't dereference struct page pointers without notifier lock
The pnfs that we obtain from hmm_range_fault() point to pages that
we don't have a reference on, and the guarantee that they are still
in the cpu page-tables is that the notifier lock must be held and the
notifier seqno is still valid.
So while building the sg table and marking the pages accesses / dirty
we need to hold this lock with a validated seqno.
However, the lock is reclaim tainted which makes
sg_alloc_table_from_pages_segment() unusable, since it internally
allocates memory.
Instead build the sg-table manually. For the non-iommu case
this might lead to fewer coalesces, but if that's a problem it can
be fixed up later in the resource cursor code. For the iommu case,
the whole sg-table may still be coalesced to a single contigous
device va region.
This avoids marking pages that we don't own dirty and accessed, and
it also avoid dereferencing struct pages that we don't own.
v2:
- Use assert to check whether hmm pfns are valid (Matthew Auld)
- Take into account that large pages may cross range boundaries
(Matthew Auld)
v3:
- Don't unnecessarily check for a non-freed sg-table. (Matthew Auld)
- Add a missing up_read() in an error path. (Matthew Auld)
(cherry picked from commit ea3e66d280ce2576664a862693d1da8fd324c317)
In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix 'scheduling while atomic' in mptcp_pm_nl_append_new_local_addr
If multiple connection requests attempt to create an implicit mptcp
endpoint in parallel, more than one caller may end up in
mptcp_pm_nl_append_new_local_addr because none found the address in
local_addr_list during their call to mptcp_pm_nl_get_local_id. In this
case, the concurrent new_local_addr calls may delete the address entry
created by the previous caller. These deletes use synchronize_rcu, but
this is not permitted in some of the contexts where this function may be
called. During packet recv, the caller may be in a rcu read critical
section and have preemption disabled.
An example stack:
BUG: scheduling while atomic: swapper/2/0/0x00000302
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:117 (discriminator 1))
dump_stack (lib/dump_stack.c:124)
__schedule_bug (kernel/sched/core.c:5943)
schedule_debug.constprop.0 (arch/x86/include/asm/preempt.h:33 kernel/sched/core.c:5970)
__schedule (arch/x86/include/asm/jump_label.h:27 include/linux/jump_label.h:207 kernel/sched/features.h:29 kernel/sched/core.c:6621)
schedule (arch/x86/include/asm/preempt.h:84 kernel/sched/core.c:6804 kernel/sched/core.c:6818)
schedule_timeout (kernel/time/timer.c:2160)
wait_for_completion (kernel/sched/completion.c:96 kernel/sched/completion.c:116 kernel/sched/completion.c:127 kernel/sched/completion.c:148)
__wait_rcu_gp (include/linux/rcupdate.h:311 kernel/rcu/update.c:444)
synchronize_rcu (kernel/rcu/tree.c:3609)
mptcp_pm_nl_append_new_local_addr (net/mptcp/pm_netlink.c:966 net/mptcp/pm_netlink.c:1061)
mptcp_pm_nl_get_local_id (net/mptcp/pm_netlink.c:1164)
mptcp_pm_get_local_id (net/mptcp/pm.c:420)
subflow_check_req (net/mptcp/subflow.c:98 net/mptcp/subflow.c:213)
subflow_v4_route_req (net/mptcp/subflow.c:305)
tcp_conn_request (net/ipv4/tcp_input.c:7216)
subflow_v4_conn_request (net/mptcp/subflow.c:651)
tcp_rcv_state_process (net/ipv4/tcp_input.c:6709)
tcp_v4_do_rcv (net/ipv4/tcp_ipv4.c:1934)
tcp_v4_rcv (net/ipv4/tcp_ipv4.c:2334)
ip_protocol_deliver_rcu (net/ipv4/ip_input.c:205 (discriminator 1))
ip_local_deliver_finish (include/linux/rcupdate.h:813 net/ipv4/ip_input.c:234)
ip_local_deliver (include/linux/netfilter.h:314 include/linux/netfilter.h:308 net/ipv4/ip_input.c:254)
ip_sublist_rcv_finish (include/net/dst.h:461 net/ipv4/ip_input.c:580)
ip_sublist_rcv (net/ipv4/ip_input.c:640)
ip_list_rcv (net/ipv4/ip_input.c:675)
__netif_receive_skb_list_core (net/core/dev.c:5583 net/core/dev.c:5631)
netif_receive_skb_list_internal (net/core/dev.c:5685 net/core/dev.c:5774)
napi_complete_done (include/linux/list.h:37 include/net/gro.h:449 include/net/gro.h:444 net/core/dev.c:6114)
igb_poll (drivers/net/ethernet/intel/igb/igb_main.c:8244) igb
__napi_poll (net/core/dev.c:6582)
net_rx_action (net/core/dev.c:6653 net/core/dev.c:6787)
handle_softirqs (kernel/softirq.c:553)
__irq_exit_rcu (kernel/softirq.c:588 kernel/softirq.c:427 kernel/softirq.c:636)
irq_exit_rcu (kernel/softirq.c:651)
common_interrupt (arch/x86/kernel/irq.c:247 (discriminator 14))
</IRQ>
This problem seems particularly prevalent if the user advertises an
endpoint that has a different external vs internal address. In the case
where the external address is advertised and multiple connections
already exist, multiple subflow SYNs arrive in parallel which tends to
trigger the race during creation of the first local_addr_list entries
which have the internal address instead.
Fix by skipping the replacement of an existing implicit local address if
called via mptcp_pm_nl_get_local_id.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Add check for mgmt_alloc_skb() in mgmt_remote_name()
Add check for the return value of mgmt_alloc_skb() in
mgmt_remote_name() to prevent null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Add check for mgmt_alloc_skb() in mgmt_device_connected()
Add check for the return value of mgmt_alloc_skb() in
mgmt_device_connected() to prevent null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
rapidio: add check for rio_add_net() in rio_scan_alloc_net()
The return value of rio_add_net() should be checked. If it fails,
put_device() should be called to free the memory and give up the reference
initialized in rio_add_net().
In the Linux kernel, the following vulnerability has been resolved:
arm: pgtable: fix NULL pointer dereference issue
When update_mmu_cache_range() is called by update_mmu_cache(), the vmf
parameter is NULL, which will cause a NULL pointer dereference issue in
adjust_pte():
Unable to handle kernel NULL pointer dereference at virtual address 00000030 when read
Hardware name: Atmel AT91SAM9
PC is at update_mmu_cache_range+0x1e0/0x278
LR is at pte_offset_map_rw_nolock+0x18/0x2c
Call trace:
update_mmu_cache_range from remove_migration_pte+0x29c/0x2ec
remove_migration_pte from rmap_walk_file+0xcc/0x130
rmap_walk_file from remove_migration_ptes+0x90/0xa4
remove_migration_ptes from migrate_pages_batch+0x6d4/0x858
migrate_pages_batch from migrate_pages+0x188/0x488
migrate_pages from compact_zone+0x56c/0x954
compact_zone from compact_node+0x90/0xf0
compact_node from kcompactd+0x1d4/0x204
kcompactd from kthread+0x120/0x12c
kthread from ret_from_fork+0x14/0x38
Exception stack(0xc0d8bfb0 to 0xc0d8bff8)
To fix it, do not rely on whether 'ptl' is equal to decide whether to hold
the pte lock, but decide it by whether CONFIG_SPLIT_PTE_PTLOCKS is
enabled. In addition, if two vmas map to the same PTE page, there is no
need to hold the pte lock again, otherwise a deadlock will occur. Just
add the need_lock parameter to let adjust_pte() know this information.
In the Linux kernel, the following vulnerability has been resolved:
mm: abort vma_modify() on merge out of memory failure
The remainder of vma_modify() relies upon the vmg state remaining pristine
after a merge attempt.
Usually this is the case, however in the one edge case scenario of a merge
attempt failing not due to the specified range being unmergeable, but
rather due to an out of memory error arising when attempting to commit the
merge, this assumption becomes untrue.
This results in vmg->start, end being modified, and thus the proceeding
attempts to split the VMA will be done with invalid start/end values.
Thankfully, it is likely practically impossible for us to hit this in
reality, as it would require a maple tree node pre-allocation failure that
would likely never happen due to it being 'too small to fail', i.e. the
kernel would simply keep retrying reclaim until it succeeded.
However, this scenario remains theoretically possible, and what we are
doing here is wrong so we must correct it.
The safest option is, when this scenario occurs, to simply give up the
operation. If we cannot allocate memory to merge, then we cannot allocate
memory to split either (perhaps moreso!).
Any scenario where this would be happening would be under very extreme
(likely fatal) memory pressure, so it's best we give up early.
So there is no doubt it is appropriate to simply bail out in this
scenario.
However, in general we must if at all possible never assume VMG state is
stable after a merge attempt, since merge operations update VMG fields.
As a result, additionally also make this clear by storing start, end in
local variables.
The issue was reported originally by syzkaller, and by Brad Spengler (via
an off-list discussion), and in both instances it manifested as a
triggering of the assert:
VM_WARN_ON_VMG(start >= end, vmg);
In vma_merge_existing_range().
It seems at least one scenario in which this is occurring is one in which
the merge being attempted is due to an madvise() across multiple VMAs
which looks like this:
start end
|<------>|
|----------|------|
| vma | next |
|----------|------|
When madvise_walk_vmas() is invoked, we first find vma in the above
(determining prev to be equal to vma as we are offset into vma), and then
enter the loop.
We determine the end of vma that forms part of the range we are
madvise()'ing by setting 'tmp' to this value:
/* Here vma->vm_start <= start < (end|vma->vm_end) */
tmp = vma->vm_end;
We then invoke the madvise() operation via visit(), letting prev get
updated to point to vma as part of the operation:
/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
error = visit(vma, &prev, start, tmp, arg);
Where the visit() function pointer in this instance is
madvise_vma_behavior().
As observed in syzkaller reports, it is ultimately madvise_update_vma()
that is invoked, calling vma_modify_flags_name() and vma_modify() in turn.
Then, in vma_modify(), we attempt the merge:
merged = vma_merge_existing_range(vmg);
if (merged)
return merged;
We invoke this with vmg->start, end set to start, tmp as such:
start tmp
|<--->|
|----------|------|
| vma | next |
|----------|------|
We find ourselves in the merge right scenario, but the one in which we
cannot remove the middle (we are offset into vma).
Here we have a special case where vmg->start, end get set to perhaps
unintuitive values - we intended to shrink the middle VMA and expand the
next.
This means vmg->start, end are set to... vma->vm_start, start.
Now the commit_merge() fails, and vmg->start, end are left like this.
This means we return to the rest of vma_modify() with vmg->start, end
(here denoted as start', end') set as:
start' end'
|<-->|
|----------|------|
| vma | next |
|----------|------|
So we now erroneously try to split accordingly. This is where the
unfortunate
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
hwpoison, memory_hotplug: lock folio before unmap hwpoisoned folio
Commit b15c87263a69 ("hwpoison, memory_hotplug: allow hwpoisoned pages to
be offlined) add page poison checks in do_migrate_range in order to make
offline hwpoisoned page possible by introducing isolate_lru_page and
try_to_unmap for hwpoisoned page. However folio lock must be held before
calling try_to_unmap. Add it to fix this problem.
Warning will be produced if folio is not locked during unmap:
------------[ cut here ]------------
kernel BUG at ./include/linux/swapops.h:400!
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 4 UID: 0 PID: 411 Comm: bash Tainted: G W 6.13.0-rc1-00016-g3c434c7ee82a-dirty #41
Tainted: [W]=WARN
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : try_to_unmap_one+0xb08/0xd3c
lr : try_to_unmap_one+0x3dc/0xd3c
Call trace:
try_to_unmap_one+0xb08/0xd3c (P)
try_to_unmap_one+0x3dc/0xd3c (L)
rmap_walk_anon+0xdc/0x1f8
rmap_walk+0x3c/0x58
try_to_unmap+0x88/0x90
unmap_poisoned_folio+0x30/0xa8
do_migrate_range+0x4a0/0x568
offline_pages+0x5a4/0x670
memory_block_action+0x17c/0x374
memory_subsys_offline+0x3c/0x78
device_offline+0xa4/0xd0
state_store+0x8c/0xf0
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x44/0x54
kernfs_fop_write_iter+0x118/0x1a8
vfs_write+0x3a8/0x4bc
ksys_write+0x6c/0xf8
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xd0
el0t_64_sync_handler+0xc8/0xcc
el0t_64_sync+0x198/0x19c
Code: f9407be0 b5fff320 d4210000 17ffff97 (d4210000)
---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don't try to talk to a dead firmware
This fixes:
bad state = 0
WARNING: CPU: 10 PID: 702 at drivers/net/wireless/inel/iwlwifi/iwl-trans.c:178 iwl_trans_send_cmd+0xba/0xe0 [iwlwifi]
Call Trace:
<TASK>
? __warn+0xca/0x1c0
? iwl_trans_send_cmd+0xba/0xe0 [iwlwifi 64fa9ad799a0e0d2ba53d4af93a53ad9a531f8d4]
iwl_fw_dbg_clear_monitor_buf+0xd7/0x110 [iwlwifi 64fa9ad799a0e0d2ba53d4af93a53ad9a531f8d4]
_iwl_dbgfs_fw_dbg_clear_write+0xe2/0x120 [iwlmvm 0e8adb18cea92d2c341766bcc10b18699290068a]
Ask whether the firmware is alive before sending a command.
In the Linux kernel, the following vulnerability has been resolved:
net: gso: fix ownership in __udp_gso_segment
In __udp_gso_segment the skb destructor is removed before segmenting the
skb but the socket reference is kept as-is. This is an issue if the
original skb is later orphaned as we can hit the following bug:
kernel BUG at ./include/linux/skbuff.h:3312! (skb_orphan)
RIP: 0010:ip_rcv_core+0x8b2/0xca0
Call Trace:
ip_rcv+0xab/0x6e0
__netif_receive_skb_one_core+0x168/0x1b0
process_backlog+0x384/0x1100
__napi_poll.constprop.0+0xa1/0x370
net_rx_action+0x925/0xe50
The above can happen following a sequence of events when using
OpenVSwitch, when an OVS_ACTION_ATTR_USERSPACE action precedes an
OVS_ACTION_ATTR_OUTPUT action:
1. OVS_ACTION_ATTR_USERSPACE is handled (in do_execute_actions): the skb
goes through queue_gso_packets and then __udp_gso_segment, where its
destructor is removed.
2. The segments' data are copied and sent to userspace.
3. OVS_ACTION_ATTR_OUTPUT is handled (in do_execute_actions) and the
same original skb is sent to its path.
4. If it later hits skb_orphan, we hit the bug.
Fix this by also removing the reference to the socket in
__udp_gso_segment.
In the Linux kernel, the following vulnerability has been resolved:
llc: do not use skb_get() before dev_queue_xmit()
syzbot is able to crash hosts [1], using llc and devices
not supporting IFF_TX_SKB_SHARING.
In this case, e1000 driver calls eth_skb_pad(), while
the skb is shared.
Simply replace skb_get() by skb_clone() in net/llc/llc_s_ac.c
Note that e1000 driver might have an issue with pktgen,
because it does not clear IFF_TX_SKB_SHARING, this is an
orthogonal change.
We need to audit other skb_get() uses in net/llc.
[1]
kernel BUG at net/core/skbuff.c:2178 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 16371 Comm: syz.2.2764 Not tainted 6.14.0-rc4-syzkaller-00052-gac9c34d1e45a #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:pskb_expand_head+0x6ce/0x1240 net/core/skbuff.c:2178
Call Trace:
<TASK>
__skb_pad+0x18a/0x610 net/core/skbuff.c:2466
__skb_put_padto include/linux/skbuff.h:3843 [inline]
skb_put_padto include/linux/skbuff.h:3862 [inline]
eth_skb_pad include/linux/etherdevice.h:656 [inline]
e1000_xmit_frame+0x2d99/0x5800 drivers/net/ethernet/intel/e1000/e1000_main.c:3128
__netdev_start_xmit include/linux/netdevice.h:5151 [inline]
netdev_start_xmit include/linux/netdevice.h:5160 [inline]
xmit_one net/core/dev.c:3806 [inline]
dev_hard_start_xmit+0x9a/0x7b0 net/core/dev.c:3822
sch_direct_xmit+0x1ae/0xc30 net/sched/sch_generic.c:343
__dev_xmit_skb net/core/dev.c:4045 [inline]
__dev_queue_xmit+0x13d4/0x43e0 net/core/dev.c:4621
dev_queue_xmit include/linux/netdevice.h:3313 [inline]
llc_sap_action_send_test_c+0x268/0x320 net/llc/llc_s_ac.c:144
llc_exec_sap_trans_actions net/llc/llc_sap.c:153 [inline]
llc_sap_next_state net/llc/llc_sap.c:182 [inline]
llc_sap_state_process+0x239/0x510 net/llc/llc_sap.c:209
llc_ui_sendmsg+0xd0d/0x14e0 net/llc/af_llc.c:993
sock_sendmsg_nosec net/socket.c:718 [inline]
In the Linux kernel, the following vulnerability has been resolved:
net: hns3: make sure ptp clock is unregister and freed if hclge_ptp_get_cycle returns an error
During the initialization of ptp, hclge_ptp_get_cycle might return an error
and returned directly without unregister clock and free it. To avoid that,
call hclge_ptp_destroy_clock to unregist and free clock if
hclge_ptp_get_cycle failed.
In the Linux kernel, the following vulnerability has been resolved:
ppp: Fix KMSAN uninit-value warning with bpf
Syzbot caught an "KMSAN: uninit-value" warning [1], which is caused by the
ppp driver not initializing a 2-byte header when using socket filter.
The following code can generate a PPP filter BPF program:
'''
struct bpf_program fp;
pcap_t *handle;
handle = pcap_open_dead(DLT_PPP_PPPD, 65535);
pcap_compile(handle, &fp, "ip and outbound", 0, 0);
bpf_dump(&fp, 1);
'''
Its output is:
'''
(000) ldh [2]
(001) jeq #0x21 jt 2 jf 5
(002) ldb [0]
(003) jeq #0x1 jt 4 jf 5
(004) ret #65535
(005) ret #0
'''
Wen can find similar code at the following link:
https://github.com/ppp-project/ppp/blob/master/pppd/options.c#L1680
The maintainer of this code repository is also the original maintainer
of the ppp driver.
As you can see the BPF program skips 2 bytes of data and then reads the
'Protocol' field to determine if it's an IP packet. Then it read the first
byte of the first 2 bytes to determine the direction.
The issue is that only the first byte indicating direction is initialized
in current ppp driver code while the second byte is not initialized.
For normal BPF programs generated by libpcap, uninitialized data won't be
used, so it's not a problem. However, for carefully crafted BPF programs,
such as those generated by syzkaller [2], which start reading from offset
0, the uninitialized data will be used and caught by KMSAN.
[1] https://syzkaller.appspot.com/bug?extid=853242d9c9917165d791
[2] https://syzkaller.appspot.com/text?tag=ReproC&x=11994913980000
In the Linux kernel, the following vulnerability has been resolved:
net: ethtool: netlink: Allow NULL nlattrs when getting a phy_device
ethnl_req_get_phydev() is used to lookup a phy_device, in the case an
ethtool netlink command targets a specific phydev within a netdev's
topology.
It takes as a parameter a const struct nlattr *header that's used for
error handling :
if (!phydev) {
NL_SET_ERR_MSG_ATTR(extack, header,
"no phy matching phyindex");
return ERR_PTR(-ENODEV);
}
In the notify path after a ->set operation however, there's no request
attributes available.
The typical callsite for the above function looks like:
phydev = ethnl_req_get_phydev(req_base, tb[ETHTOOL_A_XXX_HEADER],
info->extack);
So, when tb is NULL (such as in the ethnl notify path), we have a nice
crash.
It turns out that there's only the PLCA command that is in that case, as
the other phydev-specific commands don't have a notification.
This commit fixes the crash by passing the cmd index and the nlattr
array separately, allowing NULL-checking it directly inside the helper.
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Fix NULL pointer access
Resources should be released only after all threads that utilize them
have been destroyed.
This commit ensures that resources are not released prematurely by waiting
for the associated workqueue to complete before deallocating them.
In the Linux kernel, the following vulnerability has been resolved:
usb: renesas_usbhs: Flush the notify_hotplug_work
When performing continuous unbind/bind operations on the USB drivers
available on the Renesas RZ/G2L SoC, a kernel crash with the message
"Unable to handle kernel NULL pointer dereference at virtual address"
may occur. This issue points to the usbhsc_notify_hotplug() function.
Flush the delayed work to avoid its execution when driver resources are
unavailable.
In the Linux kernel, the following vulnerability has been resolved:
usb: atm: cxacru: fix a flaw in existing endpoint checks
Syzbot once again identified a flaw in usb endpoint checking, see [1].
This time the issue stems from a commit authored by me (2eabb655a968
("usb: atm: cxacru: fix endpoint checking in cxacru_bind()")).
While using usb_find_common_endpoints() may usually be enough to
discard devices with wrong endpoints, in this case one needs more
than just finding and identifying the sufficient number of endpoints
of correct types - one needs to check the endpoint's address as well.
Since cxacru_bind() fills URBs with CXACRU_EP_CMD address in mind,
switch the endpoint verification approach to usb_check_XXX_endpoints()
instead to fix incomplete ep testing.
[1] Syzbot report:
usb 5-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 1378 at drivers/usb/core/urb.c:504 usb_submit_urb+0xc4e/0x18c0 drivers/usb/core/urb.c:503
...
RIP: 0010:usb_submit_urb+0xc4e/0x18c0 drivers/usb/core/urb.c:503
...
Call Trace:
<TASK>
cxacru_cm+0x3c8/0xe50 drivers/usb/atm/cxacru.c:649
cxacru_card_status drivers/usb/atm/cxacru.c:760 [inline]
cxacru_bind+0xcf9/0x1150 drivers/usb/atm/cxacru.c:1223
usbatm_usb_probe+0x314/0x1d30 drivers/usb/atm/usbatm.c:1058
cxacru_usb_probe+0x184/0x220 drivers/usb/atm/cxacru.c:1377
usb_probe_interface+0x641/0xbb0 drivers/usb/core/driver.c:396
really_probe+0x2b9/0xad0 drivers/base/dd.c:658
__driver_probe_device+0x1a2/0x390 drivers/base/dd.c:800
driver_probe_device+0x50/0x430 drivers/base/dd.c:830
...
In the Linux kernel, the following vulnerability has been resolved:
x86/amd_nb: Use rdmsr_safe() in amd_get_mmconfig_range()
Xen doesn't offer MSR_FAM10H_MMIO_CONF_BASE to all guests. This results
in the following warning:
unchecked MSR access error: RDMSR from 0xc0010058 at rIP: 0xffffffff8101d19f (xen_do_read_msr+0x7f/0xa0)
Call Trace:
xen_read_msr+0x1e/0x30
amd_get_mmconfig_range+0x2b/0x80
quirk_amd_mmconfig_area+0x28/0x100
pnp_fixup_device+0x39/0x50
__pnp_add_device+0xf/0x150
pnp_add_device+0x3d/0x100
pnpacpi_add_device_handler+0x1f9/0x280
acpi_ns_get_device_callback+0x104/0x1c0
acpi_ns_walk_namespace+0x1d0/0x260
acpi_get_devices+0x8a/0xb0
pnpacpi_init+0x50/0x80
do_one_initcall+0x46/0x2e0
kernel_init_freeable+0x1da/0x2f0
kernel_init+0x16/0x1b0
ret_from_fork+0x30/0x50
ret_from_fork_asm+0x1b/0x30
based on quirks for a "PNP0c01" device. Treating MMCFG as disabled is the
right course of action, so no change is needed there.
This was most likely exposed by fixing the Xen MSR accessors to not be
silently-safe.
In the Linux kernel, the following vulnerability has been resolved:
drm/imagination: avoid deadlock on fence release
Do scheduler queue fence release processing on a workqueue, rather
than in the release function itself.
Fixes deadlock issues such as the following:
[ 607.400437] ============================================
[ 607.405755] WARNING: possible recursive locking detected
[ 607.415500] --------------------------------------------
[ 607.420817] weston:zfq0/24149 is trying to acquire lock:
[ 607.426131] ffff000017d041a0 (reservation_ww_class_mutex){+.+.}-{3:3}, at: pvr_gem_object_vunmap+0x40/0xc0 [powervr]
[ 607.436728]
but task is already holding lock:
[ 607.442554] ffff000017d105a0 (reservation_ww_class_mutex){+.+.}-{3:3}, at: dma_buf_ioctl+0x250/0x554
[ 607.451727]
other info that might help us debug this:
[ 607.458245] Possible unsafe locking scenario:
[ 607.464155] CPU0
[ 607.466601] ----
[ 607.469044] lock(reservation_ww_class_mutex);
[ 607.473584] lock(reservation_ww_class_mutex);
[ 607.478114]
*** DEADLOCK ***
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: regulatory: improve invalid hints checking
Syzbot keeps reporting an issue [1] that occurs when erroneous symbols
sent from userspace get through into user_alpha2[] via
regulatory_hint_user() call. Such invalid regulatory hints should be
rejected.
While a sanity check from commit 47caf685a685 ("cfg80211: regulatory:
reject invalid hints") looks to be enough to deter these very cases,
there is a way to get around it due to 2 reasons.
1) The way isalpha() works, symbols other than latin lower and
upper letters may be used to determine a country/domain.
For instance, greek letters will also be considered upper/lower
letters and for such characters isalpha() will return true as well.
However, ISO-3166-1 alpha2 codes should only hold latin
characters.
2) While processing a user regulatory request, between
reg_process_hint_user() and regulatory_hint_user() there happens to
be a call to queue_regulatory_request() which modifies letters in
request->alpha2[] with toupper(). This works fine for latin symbols,
less so for weird letter characters from the second part of _ctype[].
Syzbot triggers a warning in is_user_regdom_saved() by first sending
over an unexpected non-latin letter that gets malformed by toupper()
into a character that ends up failing isalpha() check.
Prevent this by enhancing is_an_alpha2() to ensure that incoming
symbols are latin letters and nothing else.
[1] Syzbot report:
------------[ cut here ]------------
Unexpected user alpha2: A�
WARNING: CPU: 1 PID: 964 at net/wireless/reg.c:442 is_user_regdom_saved net/wireless/reg.c:440 [inline]
WARNING: CPU: 1 PID: 964 at net/wireless/reg.c:442 restore_alpha2 net/wireless/reg.c:3424 [inline]
WARNING: CPU: 1 PID: 964 at net/wireless/reg.c:442 restore_regulatory_settings+0x3c0/0x1e50 net/wireless/reg.c:3516
Modules linked in:
CPU: 1 UID: 0 PID: 964 Comm: kworker/1:2 Not tainted 6.12.0-rc5-syzkaller-00044-gc1e939a21eb1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: events_power_efficient crda_timeout_work
RIP: 0010:is_user_regdom_saved net/wireless/reg.c:440 [inline]
RIP: 0010:restore_alpha2 net/wireless/reg.c:3424 [inline]
RIP: 0010:restore_regulatory_settings+0x3c0/0x1e50 net/wireless/reg.c:3516
...
Call Trace:
<TASK>
crda_timeout_work+0x27/0x50 net/wireless/reg.c:542
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa65/0x1850 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f2/0x390 kernel/kthread.c:389
ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: reject cooked mode if it is set along with other flags
It is possible to set both MONITOR_FLAG_COOK_FRAMES and MONITOR_FLAG_ACTIVE
flags simultaneously on the same monitor interface from the userspace. This
causes a sub-interface to be created with no IEEE80211_SDATA_IN_DRIVER bit
set because the monitor interface is in the cooked state and it takes
precedence over all other states. When the interface is then being deleted
the kernel calls WARN_ONCE() from check_sdata_in_driver() because of missing
that bit.
Fix this by rejecting MONITOR_FLAG_COOK_FRAMES if it is set along with
other flags.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.