An issue was discovered in Datalust Seq before 2024.3.13545. An insecure default parsing depth limit allows stack consumption when parsing user-supplied queries containing deeply nested expressions.
A vulnerability was found in libzvbi up to 0.2.43. It has been rated as problematic. Affected by this issue is the function _vbi_strndup_iconv. The manipulation leads to integer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. Upgrading to version 0.2.44 is able to address this issue. It is recommended to upgrade the affected component. The code maintainer was informed beforehand about the issues. She reacted very fast and highly professional.
A vulnerability was found in libzvbi up to 0.2.43. It has been declared as problematic. Affected by this vulnerability is the function vbi_strndup_iconv_ucs2 of the file src/conv.c. The manipulation of the argument src_length leads to integer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. Upgrading to version 0.2.44 is able to address this issue. The patch is named ca1672134b3e2962cd392212c73f44f8f4cb489f. It is recommended to upgrade the affected component. The code maintainer was informed beforehand about the issues. She reacted very fast and highly professional.
A vulnerability was found in libzvbi up to 0.2.43. It has been classified as problematic. Affected is the function vbi_strndup_iconv_ucs2 of the file src/conv.c. The manipulation of the argument src_length leads to uninitialized pointer. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. Upgrading to version 0.2.44 is able to address this issue. The patch is identified as 8def647eea27f7fd7ad33ff79c2d6d3e39948dce. It is recommended to upgrade the affected component. The code maintainer was informed beforehand about the issues. She reacted very fast and highly professional.
SAP BusinessObjects Business Intelligence Platform (Web Intelligence) contains a deprecated web application endpoint that is not properly secured. An attacker could take advantage of this by injecting a malicious url in the data returned to the user. On successful exploitation, there could be a limited impact on confidentiality and integrity within the scope of victim�s browser. There is no impact on availability.
A cookie management issue was addressed with improved state management. This issue is fixed in watchOS 11, macOS Sequoia 15, Safari 18, visionOS 2, iOS 18 and iPadOS 18, tvOS 18. A malicious website may exfiltrate data cross-origin.
The issue was addressed with improved checks. This issue is fixed in watchOS 11, macOS Sequoia 15, Safari 18, visionOS 2, iOS 18 and iPadOS 18, tvOS 18. Processing maliciously crafted web content may lead to an unexpected process crash.
Nomad Community and Nomad Enterprise (“Nomad”) are vulnerable to unintentional exposure of the workload identity token and client secret token in audit logs. This vulnerability, identified as CVE-2025-1296, is fixed in Nomad Community Edition 1.9.7 and Nomad Enterprise 1.9.7, 1.8.11, and 1.7.19.
picklescan before 0.0.23 is vulnerable to a ZIP archive manipulation attack that causes it to crash when attempting to extract and scan PyTorch model archives. By modifying the filename in the ZIP header while keeping the original filename in the directory listing, an attacker can make PickleScan raise a BadZipFile error. However, PyTorch's more forgiving ZIP implementation still allows the model to be loaded, enabling malicious payloads to bypass detection.
A CWE-15 "External Control of System or Configuration Setting" in GE Vernova UR IED family devices from version 7.0 up to 8.60 allows an attacker to provide input that establishes a TCP connection through a port forwarding. The lack of the IP address and port validation may allow the attacker to bypass firewall rules or to send malicious traffic in the network.
MariaDB Server 10.4 through 10.5.*, 10.6 through 10.6.*, 10.7 through 10.11.*, 11.0 through 11.0.*, and 11.1 through 11.4.* crashes in Item_direct_view_ref::derived_field_transformer_for_where.
MariaDB Server 10.4 through 10.5.*, 10.6 through 10.6.*, 10.7 through 10.11.*, and 11.0 through 11.0.* can sometimes crash with an empty backtrace log. This may be related to make_aggr_tables_info and optimize_stage2.
A server-side request forgery (SSRF) vulnerability has been reported to affect QuLog Center. If exploited, the vulnerability could allow remote attackers who have gained administrator access to read application data.
We have already fixed the vulnerability in the following versions:
QuLog Center 1.7.0.829 ( 2024/10/01 ) and later
QuLog Center 1.8.0.888 ( 2024/10/15 ) and later
QTS 4.5.4.2957 build 20241119 and later
QuTS hero h4.5.4.2956 build 20241119 and later
axios is a promise based HTTP client for the browser and node.js. The issue occurs when passing absolute URLs rather than protocol-relative URLs to axios. Even if baseURL is set, axios sends the request to the specified absolute URL, potentially causing SSRF and credential leakage. This issue impacts both server-side and client-side usage of axios. This issue is fixed in 1.8.2.
A vulnerability has been found in StarSea99 starsea-mall 1.0/2.X and classified as critical. Affected by this vulnerability is the function updateUserInfo of the file /personal/updateInfo of the component com.siro.mall.controller.mall.UserController. The manipulation of the argument userId leads to improper access controls. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: avoid garbage value in panthor_ioctl_dev_query()
'priorities_info' is uninitialized, and the uninitialized value is copied
to user object when calling PANTHOR_UOBJ_SET(). Using memset to initialize
'priorities_info' to avoid this garbage value problem.
In the Linux kernel, the following vulnerability has been resolved:
amdkfd: properly free gang_ctx_bo when failed to init user queue
The destructor of a gtt bo is declared as
void amdgpu_amdkfd_free_gtt_mem(struct amdgpu_device *adev, void **mem_obj);
Which takes void** as the second parameter.
GCC allows passing void* to the function because void* can be implicitly
casted to any other types, so it can pass compiling.
However, passing this void* parameter into the function's
execution process(which expects void** and dereferencing void**)
will result in errors.
In the Linux kernel, the following vulnerability has been resolved:
cpufreq/amd-pstate: Fix cpufreq_policy ref counting
amd_pstate_update_limits() takes a cpufreq_policy reference but doesn't
decrement the refcount in one of the exit paths, fix that.
In the Linux kernel, the following vulnerability has been resolved:
thermal/netlink: Prevent userspace segmentation fault by adjusting UAPI header
The intel-lpmd tool [1], which uses the THERMAL_GENL_ATTR_CPU_CAPABILITY
attribute to receive HFI events from kernel space, encounters a
segmentation fault after commit 1773572863c4 ("thermal: netlink: Add the
commands and the events for the thresholds").
The issue arises because the THERMAL_GENL_ATTR_CPU_CAPABILITY raw value
was changed while intel_lpmd still uses the old value.
Although intel_lpmd can be updated to check the THERMAL_GENL_VERSION and
use the appropriate THERMAL_GENL_ATTR_CPU_CAPABILITY value, the commit
itself is questionable.
The commit introduced a new element in the middle of enum thermal_genl_attr,
which affects many existing attributes and introduces potential risks
and unnecessary maintenance burdens for userspace thermal netlink event
users.
Solve the issue by moving the newly introduced
THERMAL_GENL_ATTR_TZ_PREV_TEMP attribute to the end of the
enum thermal_genl_attr. This ensures that all existing thermal generic
netlink attributes remain unaffected.
[ rjw: Subject edits ]
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop
Move the conditional loading of hardware DR6 with the guest's DR6 value
out of the core .vcpu_run() loop to fix a bug where KVM can load hardware
with a stale vcpu->arch.dr6.
When the guest accesses a DR and host userspace isn't debugging the guest,
KVM disables DR interception and loads the guest's values into hardware on
VM-Enter and saves them on VM-Exit. This allows the guest to access DRs
at will, e.g. so that a sequence of DR accesses to configure a breakpoint
only generates one VM-Exit.
For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also
identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest)
and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading
DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop.
But for DR6, the guest's value doesn't need to be loaded into hardware for
KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas
VMX requires software to manually load the guest value, and so loading the
guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done
_inside_ the core run loop.
Unfortunately, saving the guest values on VM-Exit is initiated by common
x86, again outside of the core run loop. If the guest modifies DR6 (in
hardware, when DR interception is disabled), and then the next VM-Exit is
a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and
clobber the guest's actual value.
The bug shows up primarily with nested VMX because KVM handles the VMX
preemption timer in the fastpath, and the window between hardware DR6
being modified (in guest context) and DR6 being read by guest software is
orders of magnitude larger in a nested setup. E.g. in non-nested, the
VMX preemption timer would need to fire precisely between #DB injection
and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the
window where hardware DR6 is "dirty" extends all the way from L1 writing
DR6 to VMRESUME (in L1).
L1's view:
==========
<L1 disables DR interception>
CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0
A: L1 Writes DR6
CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1
B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec
D: L1 reads DR6, arch.dr6 = 0
CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0
CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0
L2 reads DR6, L1 disables DR interception
CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216
CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0
CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0
L2 detects failure
CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT
L1 reads DR6 (confirms failure)
CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0
L0's view:
==========
L2 reads DR6, arch.dr6 = 0
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
L2 => L1 nested VM-Exit
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: core: flush gadget workqueue after device removal
device_del() can lead to new work being scheduled in gadget->work
workqueue. This is observed, for example, with the dwc3 driver with the
following call stack:
device_del()
gadget_unbind_driver()
usb_gadget_disconnect_locked()
dwc3_gadget_pullup()
dwc3_gadget_soft_disconnect()
usb_gadget_set_state()
schedule_work(&gadget->work)
Move flush_work() after device_del() to ensure the workqueue is cleaned
up.
In the Linux kernel, the following vulnerability has been resolved:
io_uring/kbuf: reallocate buf lists on upgrade
IORING_REGISTER_PBUF_RING can reuse an old struct io_buffer_list if it
was created for legacy selected buffer and has been emptied. It violates
the requirement that most of the field should stay stable after publish.
Always reallocate it instead.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_midi: fix MIDI Streaming descriptor lengths
While the MIDI jacks are configured correctly, and the MIDIStreaming
endpoint descriptors are filled with the correct information,
bNumEmbMIDIJack and bLength are set incorrectly in these descriptors.
This does not matter when the numbers of in and out ports are equal, but
when they differ the host will receive broken descriptors with
uninitialized stack memory leaking into the descriptor for whichever
value is smaller.
The precise meaning of "in" and "out" in the port counts is not clearly
defined and can be confusing. But elsewhere the driver consistently
uses this to match the USB meaning of IN and OUT viewed from the host,
so that "in" ports send data to the host and "out" ports receive data
from it.
A vulnerability was found in code-projects Online Ticket Reservation System 1.0. It has been declared as problematic. This vulnerability affects unknown code of the file /passenger.php. The manipulation of the argument name leads to cross site scripting. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was found in LinZhaoguan pb-cms 1.0.0 and classified as critical. This issue affects some unknown processing of the file /admin#themes of the component Add New Topic Handler. The manipulation of the argument Topic Key leads to deserialization. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability has been found in huang-yk student-manage 1.0 and classified as problematic. This vulnerability affects unknown code. The manipulation leads to cross-site request forgery. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability, which was classified as critical, has been found in s-a-zhd Ecommerce-Website-using-PHP 1.0. Affected by this issue is some unknown functionality of the file /shop.php. The manipulation of the argument p_cat leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was found in s-a-zhd Ecommerce-Website-using-PHP 1.0. It has been classified as critical. This affects an unknown part of the file details.php. The manipulation of the argument pro_id leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used.
FastGPT is a knowledge-based platform built on the LLMs. Since the web crawling plug-in does not perform intranet IP verification, an attacker can initiate an intranet IP request, causing the system to initiate a request through the intranet and potentially obtain some private data on the intranet. This issue is fixed in 4.9.0.
An issue was discovered in Django 5.1 before 5.1.7, 5.0 before 5.0.13, and 4.2 before 4.2.20. The django.utils.text.wrap() method and wordwrap template filter are subject to a potential denial-of-service attack when used with very long strings.
Group-Office is an enterprise CRM and groupware tool. This Stored XSS vulnerability exists where user input in the Name field is not properly sanitized before being stored. This vulnerability is fixed in 6.8.100.
A vulnerability was found in s-a-zhd Ecommerce-Website-using-PHP 1.0 and classified as critical. Affected by this issue is some unknown functionality of the file /customer_register.php. The manipulation of the argument name leads to unrestricted upload. The attack may be launched remotely. The exploit has been disclosed to the public and may be used.
In the Linux kernel, the following vulnerability has been resolved:
seccomp: passthrough uretprobe systemcall without filtering
When attaching uretprobes to processes running inside docker, the attached
process is segfaulted when encountering the retprobe.
The reason is that now that uretprobe is a system call the default seccomp
filters in docker block it as they only allow a specific set of known
syscalls. This is true for other userspace applications which use seccomp
to control their syscall surface.
Since uretprobe is a "kernel implementation detail" system call which is
not used by userspace application code directly, it is impractical and
there's very little point in forcing all userspace applications to
explicitly allow it in order to avoid crashing tracked processes.
Pass this systemcall through seccomp without depending on configuration.
Note: uretprobe is currently only x86_64 and isn't expected to ever be
supported in i386.
[kees: minimized changes for easier backporting, tweaked commit log]
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Avoid use of NULL after WARN_ON_ONCE
There is a WARN_ON_ONCE to catch an unlikely situation when
domain_remove_dev_pasid can't find the `pasid`. In case it nevertheless
happens we must avoid using a NULL pointer.
In the Linux kernel, the following vulnerability has been resolved:
block: don't revert iter for -EIOCBQUEUED
blkdev_read_iter() has a few odd checks, like gating the position and
count adjustment on whether or not the result is bigger-than-or-equal to
zero (where bigger than makes more sense), and not checking the return
value of blkdev_direct_IO() before doing an iov_iter_revert(). The
latter can lead to attempting to revert with a negative value, which
when passed to iov_iter_revert() as an unsigned value will lead to
throwing a WARN_ON() because unroll is bigger than MAX_RW_COUNT.
Be sane and don't revert for -EIOCBQUEUED, like what is done in other
spots.
In the Linux kernel, the following vulnerability has been resolved:
PCI: Avoid putting some root ports into D3 on TUXEDO Sirius Gen1
commit 9d26d3a8f1b0 ("PCI: Put PCIe ports into D3 during suspend") sets the
policy that all PCIe ports are allowed to use D3. When the system is
suspended if the port is not power manageable by the platform and won't be
used for wakeup via a PME this sets up the policy for these ports to go
into D3hot.
This policy generally makes sense from an OSPM perspective but it leads to
problems with wakeup from suspend on the TUXEDO Sirius 16 Gen 1 with a
specific old BIOS. This manifests as a system hang.
On the affected Device + BIOS combination, add a quirk for the root port of
the problematic controller to ensure that these root ports are not put into
D3hot at suspend.
This patch is based on
https://lore.kernel.org/linux-pci/20230708214457.1229-2-mario.limonciello@amd.com
but with the added condition both in the documentation and in the code to
apply only to the TUXEDO Sirius 16 Gen 1 with a specific old BIOS and only
the affected root ports.
In the Linux kernel, the following vulnerability has been resolved:
landlock: Handle weird files
A corrupted filesystem (e.g. bcachefs) might return weird files.
Instead of throwing a warning and allowing access to such file, treat
them as regular files.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix the warning "__rxe_cleanup+0x12c/0x170 [rdma_rxe]"
The Call Trace is as below:
"
<TASK>
? show_regs.cold+0x1a/0x1f
? __rxe_cleanup+0x12c/0x170 [rdma_rxe]
? __warn+0x84/0xd0
? __rxe_cleanup+0x12c/0x170 [rdma_rxe]
? report_bug+0x105/0x180
? handle_bug+0x46/0x80
? exc_invalid_op+0x19/0x70
? asm_exc_invalid_op+0x1b/0x20
? __rxe_cleanup+0x12c/0x170 [rdma_rxe]
? __rxe_cleanup+0x124/0x170 [rdma_rxe]
rxe_destroy_qp.cold+0x24/0x29 [rdma_rxe]
ib_destroy_qp_user+0x118/0x190 [ib_core]
rdma_destroy_qp.cold+0x43/0x5e [rdma_cm]
rtrs_cq_qp_destroy.cold+0x1d/0x2b [rtrs_core]
rtrs_srv_close_work.cold+0x1b/0x31 [rtrs_server]
process_one_work+0x21d/0x3f0
worker_thread+0x4a/0x3c0
? process_one_work+0x3f0/0x3f0
kthread+0xf0/0x120
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK>
"
When too many rdma resources are allocated, rxe needs more time to
handle these rdma resources. Sometimes with the current timeout, rxe
can not release the rdma resources correctly.
Compared with other rdma drivers, a bigger timeout is used.
In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Stop active perfmon if it is being destroyed
If the active performance monitor (`v3d->active_perfmon`) is being
destroyed, stop it first. Currently, the active perfmon is not
stopped during destruction, leaving the `v3d->active_perfmon` pointer
stale. This can lead to undefined behavior and instability.
This patch ensures that the active perfmon is stopped before being
destroyed, aligning with the behavior introduced in commit
7d1fd3638ee3 ("drm/v3d: Stop the active perfmon before being destroyed").
In the Linux kernel, the following vulnerability has been resolved:
tomoyo: don't emit warning in tomoyo_write_control()
syzbot is reporting too large allocation warning at tomoyo_write_control(),
for one can write a very very long line without new line character. To fix
this warning, I use __GFP_NOWARN rather than checking for KMALLOC_MAX_SIZE,
for practically a valid line should be always shorter than 32KB where the
"too small to fail" memory-allocation rule applies.
One might try to write a valid line that is longer than 32KB, but such
request will likely fail with -ENOMEM. Therefore, I feel that separately
returning -EINVAL when a line is longer than KMALLOC_MAX_SIZE is redundant.
There is no need to distinguish over-32KB and over-KMALLOC_MAX_SIZE.
In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: scm: Fix missing read barrier in qcom_scm_get_tzmem_pool()
Commit 2e4955167ec5 ("firmware: qcom: scm: Fix __scm and waitq
completion variable initialization") introduced a write barrier in probe
function to store global '__scm' variable. We all known barriers are
paired (see memory-barriers.txt: "Note that write barriers should
normally be paired with read or address-dependency barriers"), therefore
accessing it from concurrent contexts requires read barrier. Previous
commit added such barrier in qcom_scm_is_available(), so let's use that
directly.
Lack of this read barrier can result in fetching stale '__scm' variable
value, NULL, and dereferencing it.
Note that barrier in qcom_scm_is_available() satisfies here the control
dependency.
In the Linux kernel, the following vulnerability has been resolved:
media: nuvoton: Fix an error check in npcm_video_ece_init()
When function of_find_device_by_node() fails, it returns NULL instead of
an error code. So the corresponding error check logic should be modified
to check whether the return value is NULL and set the error code to be
returned as -ENODEV.
In the Linux kernel, the following vulnerability has been resolved:
clk: mmp2: call pm_genpd_init() only after genpd.name is set
Setting the genpd's struct device's name with dev_set_name() is
happening within pm_genpd_init(). If it remains NULL, things can blow up
later, such as when crafting the devfs hierarchy for the power domain:
Unable to handle kernel NULL pointer dereference at virtual address 00000000 when read
...
Call trace:
strlen from start_creating+0x90/0x138
start_creating from debugfs_create_dir+0x20/0x178
debugfs_create_dir from genpd_debug_add.part.0+0x4c/0x144
genpd_debug_add.part.0 from genpd_debug_init+0x74/0x90
genpd_debug_init from do_one_initcall+0x5c/0x244
do_one_initcall from kernel_init_freeable+0x19c/0x1f4
kernel_init_freeable from kernel_init+0x1c/0x12c
kernel_init from ret_from_fork+0x14/0x28
Bisecting tracks this crash back to commit 899f44531fe6 ("pmdomain: core:
Add GENPD_FLAG_DEV_NAME_FW flag"), which exchanges use of genpd->name
with dev_name(&genpd->dev) in genpd_debug_add.part().
In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: dispcc-sm6350: Add missing parent_map for a clock
If a clk_rcg2 has a parent, it should also have parent_map defined,
otherwise we'll get a NULL pointer dereference when calling clk_set_rate
like the following:
[ 3.388105] Call trace:
[ 3.390664] qcom_find_src_index+0x3c/0x70 (P)
[ 3.395301] qcom_find_src_index+0x1c/0x70 (L)
[ 3.399934] _freq_tbl_determine_rate+0x48/0x100
[ 3.404753] clk_rcg2_determine_rate+0x1c/0x28
[ 3.409387] clk_core_determine_round_nolock+0x58/0xe4
[ 3.421414] clk_core_round_rate_nolock+0x48/0xfc
[ 3.432974] clk_core_round_rate_nolock+0xd0/0xfc
[ 3.444483] clk_core_set_rate_nolock+0x8c/0x300
[ 3.455886] clk_set_rate+0x38/0x14c
Add the parent_map property for the clock where it's missing and also
un-inline the parent_data as well to keep the matching parent_map and
parent_data together.
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix crash during unbind if gpio unit is in use
We used the wrong device for the device managed functions. We used the
usb device, when we should be using the interface device.
If we unbind the driver from the usb interface, the cleanup functions
are never called. In our case, the IRQ is never disabled.
If an IRQ is triggered, it will try to access memory sections that are
already free, causing an OOPS.
We cannot use the function devm_request_threaded_irq here. The devm_*
clean functions may be called after the main structure is released by
uvc_delete.
Luckily this bug has small impact, as it is only affected by devices
with gpio units and the user has to unbind the device, a disconnect will
not trigger this error.
In the Linux kernel, the following vulnerability has been resolved:
misc: misc_minor_alloc to use ida for all dynamic/misc dynamic minors
misc_minor_alloc was allocating id using ida for minor only in case of
MISC_DYNAMIC_MINOR but misc_minor_free was always freeing ids
using ida_free causing a mismatch and following warn:
> > WARNING: CPU: 0 PID: 159 at lib/idr.c:525 ida_free+0x3e0/0x41f
> > ida_free called for id=127 which is not allocated.
> > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
...
> > [<60941eb4>] ida_free+0x3e0/0x41f
> > [<605ac993>] misc_minor_free+0x3e/0xbc
> > [<605acb82>] misc_deregister+0x171/0x1b3
misc_minor_alloc is changed to allocate id from ida for all minors
falling in the range of dynamic/ misc dynamic minors
In the Linux kernel, the following vulnerability has been resolved:
ASoC: soc-pcm: don't use soc_pcm_ret() on .prepare callback
commit 1f5664351410 ("ASoC: lower "no backend DAIs enabled for ... Port"
log severity") ignores -EINVAL error message on common soc_pcm_ret().
It is used from many functions, ignoring -EINVAL is over-kill.
The reason why -EINVAL was ignored was it really should only be used
upon invalid parameters coming from userspace and in that case we don't
want to log an error since we do not want to give userspace a way to do
a denial-of-service attack on the syslog / diskspace.
So don't use soc_pcm_ret() on .prepare callback is better idea.
In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: gcc-sm6350: Add missing parent_map for two clocks
If a clk_rcg2 has a parent, it should also have parent_map defined,
otherwise we'll get a NULL pointer dereference when calling clk_set_rate
like the following:
[ 3.388105] Call trace:
[ 3.390664] qcom_find_src_index+0x3c/0x70 (P)
[ 3.395301] qcom_find_src_index+0x1c/0x70 (L)
[ 3.399934] _freq_tbl_determine_rate+0x48/0x100
[ 3.404753] clk_rcg2_determine_rate+0x1c/0x28
[ 3.409387] clk_core_determine_round_nolock+0x58/0xe4
[ 3.421414] clk_core_round_rate_nolock+0x48/0xfc
[ 3.432974] clk_core_round_rate_nolock+0xd0/0xfc
[ 3.444483] clk_core_set_rate_nolock+0x8c/0x300
[ 3.455886] clk_set_rate+0x38/0x14c
Add the parent_map property for two clocks where it's missing and also
un-inline the parent_data as well to keep the matching parent_map and
parent_data together.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: don't flush non-uploaded STAs
If STA state is pre-moved to AUTHORIZED (such as in IBSS
scenarios) and insertion fails, the station is freed.
In this case, the driver never knew about the station,
so trying to flush it is unexpected and may crash.
Check if the sta was uploaded to the driver before and
fix this.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: mediatek: Add locks for usb_driver_claim_interface()
The documentation for usb_driver_claim_interface() says that "the
device lock" is needed when the function is called from places other
than probe(). This appears to be the lock for the USB interface
device. The Mediatek btusb code gets called via this path:
Workqueue: hci0 hci_power_on [bluetooth]
Call trace:
usb_driver_claim_interface
btusb_mtk_claim_iso_intf
btusb_mtk_setup
hci_dev_open_sync
hci_power_on
process_scheduled_works
worker_thread
kthread
With the above call trace the device lock hasn't been claimed. Claim
it.
Without this fix, we'd sometimes see the error "Failed to claim iso
interface". Sometimes we'd even see worse errors, like a NULL pointer
dereference (where `intf->dev.driver` was NULL) with a trace like:
Call trace:
usb_suspend_both
usb_runtime_suspend
__rpm_callback
rpm_suspend
pm_runtime_work
process_scheduled_works
Both errors appear to be fixed with the proper locking.