In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: fix memory leak during D3hot to D0 transition
If 'vfio_pci_core_device::needs_pm_restore' is set (PCI device does
not have No_Soft_Reset bit set in its PMCSR config register), then
the current PCI state will be saved locally in
'vfio_pci_core_device::pm_save' during D0->D3hot transition and same
will be restored back during D3hot->D0 transition.
For saving the PCI state locally, pci_store_saved_state() is being
used and the pci_load_and_free_saved_state() will free the allocated
memory.
But for reset related IOCTLs, vfio driver calls PCI reset-related
API's which will internally change the PCI power state back to D0. So,
when the guest resumes, then it will get the current state as D0 and it
will skip the call to vfio_pci_set_power_state() for changing the
power state to D0 explicitly. In this case, the memory pointed by
'pm_save' will never be freed. In a malicious sequence, the state changing
to D3hot followed by VFIO_DEVICE_RESET/VFIO_DEVICE_PCI_HOT_RESET can be
run in a loop and it can cause an OOM situation.
This patch frees the earlier allocated memory first before overwriting
'pm_save' to prevent the mentioned memory leak.
In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: Fix reference leak in tegra_dsi_ganged_probe
The reference taken by 'of_find_device_by_node()' must be released when
not needed anymore. Add put_device() call to fix this.
In the Linux kernel, the following vulnerability has been resolved:
xsk: Fix race at socket teardown
Fix a race in the xsk socket teardown code that can lead to a NULL pointer
dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by
setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any
NAPI processing to terminate using synchronize_net(). After that, the release
code starts to tear down the socket state and free allocated memory.
BUG: kernel NULL pointer dereference, address: 00000000000000c0
PGD 8000000932469067 P4D 8000000932469067 PUD 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2
Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015
RIP: 0010:__xsk_sendmsg+0x2c/0x690
[...]
RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258
RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800
RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000
R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800
R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000
FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0
Call Trace:
<TASK>
? aa_sk_perm+0x43/0x1b0
xsk_sendmsg+0xf0/0x110
sock_sendmsg+0x65/0x70
__sys_sendto+0x113/0x190
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x23/0x50
? exit_to_user_mode_prepare+0xa5/0x1d0
__x64_sys_sendto+0x29/0x30
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
There are two problems with the current code. First, setting xs->dev to NULL
before waiting for all users to stop using the socket is not correct. The
entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg()
are all guarded by a test that xs->state is in the state XSK_BOUND and if not,
it returns right away. But one process might have passed this test but still
have not gotten to the point in which it uses xs->dev in the code. In this
interim, a second process executing xsk_unbind_dev() might have set xs->dev to
NULL which will lead to a crash for the first process. The solution here is
just to get rid of this NULL assignment since it is not used anymore. Before
commit 42fddcc7c64b ("xsk: use state member for socket synchronization"),
xs->dev was the gatekeeper to admit processes into the data plane functions,
but it was replaced with the state variable xs->state in the aforementioned
commit.
The second problem is that synchronize_net() does not wait for any process in
xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the
state they rely on might be cleaned up prematurely. This can happen when the
notifier gets called (at driver unload for example) as it uses xsk_unbind_dev().
Solve this by extending the RCU critical region from just the ndo_xsk_wakeup
to the whole functions mentioned above, so that both the test of xs->state ==
XSK_BOUND and the last use of any member of xs is covered by the RCU critical
section. This will guarantee that when synchronize_net() completes, there will
be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and
state can be cleaned up safely. Note that we need to drop the RCU lock for the
skb xmit path as it uses functions that might sleep. Due to this, we have to
retest the xs->state after we grab the mutex that protects the skb xmit code
from, among a number of things, an xsk_unbind_dev() being executed from the
notifier at the same time.
In the Linux kernel, the following vulnerability has been resolved:
ath10k: Fix error handling in ath10k_setup_msa_resources
The device_node pointer is returned by of_parse_phandle() with refcount
incremented. We should use of_node_put() on it when done.
This function only calls of_node_put() in the regular path.
And it will cause refcount leak in error path.
In the Linux kernel, the following vulnerability has been resolved:
mtd: rawnand: atmel: fix refcount issue in atmel_nand_controller_init
The reference counting issue happens in several error handling paths
on a refcounted object "nc->dmac". In these paths, the function simply
returns the error code, forgetting to balance the reference count of
"nc->dmac", increased earlier by dma_request_channel(), which may
cause refcount leaks.
Fix it by decrementing the refcount of specific object in those error
paths.
In the Linux kernel, the following vulnerability has been resolved:
mips: cdmm: Fix refcount leak in mips_cdmm_phys_base
The of_find_compatible_node() function returns a node pointer with
refcount incremented, We should use of_node_put() on it when done
Add the missing of_node_put() to release the refcount.
In the Linux kernel, the following vulnerability has been resolved:
MIPS: pgalloc: fix memory leak caused by pgd_free()
pgd page is freed by generic implementation pgd_free() since commit
f9cb654cb550 ("asm-generic: pgalloc: provide generic pgd_free()"),
however, there are scenarios that the system uses more than one page as
the pgd table, in such cases the generic implementation pgd_free() won't
be applicable anymore. For example, when PAGE_SIZE_4KB is enabled and
MIPS_VA_BITS_48 is not enabled in a 64bit system, the macro "PGD_ORDER"
will be set as "1", which will cause allocating two pages as the pgd
table. Well, at the same time, the generic implementation pgd_free()
just free one pgd page, which will result in the memory leak.
The memory leak can be easily detected by executing shell command:
"while true; do ls > /dev/null; grep MemFree /proc/meminfo; done"
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix memleak in tcp_bpf_sendmsg while sk msg is full
If tcp_bpf_sendmsg() is running while sk msg is full. When sk_msg_alloc()
returns -ENOMEM error, tcp_bpf_sendmsg() goes to wait_for_memory. If partial
memory has been alloced by sk_msg_alloc(), that is, msg_tx->sg.size is
greater than osize after sk_msg_alloc(), memleak occurs. To fix we use
sk_msg_trim() to release the allocated memory, then goto wait for memory.
Other call paths of sk_msg_alloc() have the similar issue, such as
tls_sw_sendmsg(), so handle sk_msg_trim logic inside sk_msg_alloc(),
as Cong Wang suggested.
This issue can cause the following info:
WARNING: CPU: 3 PID: 7950 at net/core/stream.c:208 sk_stream_kill_queues+0xd4/0x1a0
Call Trace:
<TASK>
inet_csk_destroy_sock+0x55/0x110
__tcp_close+0x279/0x470
tcp_close+0x1f/0x60
inet_release+0x3f/0x80
__sock_release+0x3d/0xb0
sock_close+0x11/0x20
__fput+0x92/0x250
task_work_run+0x6a/0xa0
do_exit+0x33b/0xb60
do_group_exit+0x2f/0xa0
get_signal+0xb6/0x950
arch_do_signal_or_restart+0xac/0x2a0
exit_to_user_mode_prepare+0xa9/0x200
syscall_exit_to_user_mode+0x12/0x30
do_syscall_64+0x46/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
WARNING: CPU: 3 PID: 2094 at net/ipv4/af_inet.c:155 inet_sock_destruct+0x13c/0x260
Call Trace:
<TASK>
__sk_destruct+0x24/0x1f0
sk_psock_destroy+0x19b/0x1c0
process_one_work+0x1b3/0x3c0
kthread+0xe6/0x110
ret_from_fork+0x22/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Prevent some integer underflows
My static checker complains that:
drivers/infiniband/hw/irdma/ctrl.c:3605 irdma_sc_ceq_init()
warn: can subtract underflow 'info->dev->hmc_fpm_misc.max_ceqs'?
It appears that "info->dev->hmc_fpm_misc.max_ceqs" comes from the firmware
in irdma_sc_parse_fpm_query_buf() so, yes, there is a chance that it could
be zero. Even if we trust the firmware, it's easy enough to change the
condition just as a hardenning measure.
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix memleak in sk_psock_queue_msg
If tcp_bpf_sendmsg is running during a tear down operation we may enqueue
data on the ingress msg queue while tear down is trying to free it.
sk1 (redirect sk2) sk2
------------------- ---------------
tcp_bpf_sendmsg()
tcp_bpf_send_verdict()
tcp_bpf_sendmsg_redir()
bpf_tcp_ingress()
sock_map_close()
lock_sock()
lock_sock() ... blocking
sk_psock_stop
sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
release_sock(sk);
lock_sock()
sk_mem_charge()
get_page()
sk_psock_queue_msg()
sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED);
drop_sk_msg()
release_sock()
While drop_sk_msg(), the msg has charged memory form sk by sk_mem_charge
and has sg pages need to put. To fix we use sk_msg_free() and then kfee()
msg.
This issue can cause the following info:
WARNING: CPU: 0 PID: 9202 at net/core/stream.c:205 sk_stream_kill_queues+0xc8/0xe0
Call Trace:
<IRQ>
inet_csk_destroy_sock+0x55/0x110
tcp_rcv_state_process+0xe5f/0xe90
? sk_filter_trim_cap+0x10d/0x230
? tcp_v4_do_rcv+0x161/0x250
tcp_v4_do_rcv+0x161/0x250
tcp_v4_rcv+0xc3a/0xce0
ip_protocol_deliver_rcu+0x3d/0x230
ip_local_deliver_finish+0x54/0x60
ip_local_deliver+0xfd/0x110
? ip_protocol_deliver_rcu+0x230/0x230
ip_rcv+0xd6/0x100
? ip_local_deliver+0x110/0x110
__netif_receive_skb_one_core+0x85/0xa0
process_backlog+0xa4/0x160
__napi_poll+0x29/0x1b0
net_rx_action+0x287/0x300
__do_softirq+0xff/0x2fc
do_softirq+0x79/0x90
</IRQ>
WARNING: CPU: 0 PID: 531 at net/ipv4/af_inet.c:154 inet_sock_destruct+0x175/0x1b0
Call Trace:
<TASK>
__sk_destruct+0x24/0x1f0
sk_psock_destroy+0x19b/0x1c0
process_one_work+0x1b3/0x3c0
? process_one_work+0x3c0/0x3c0
worker_thread+0x30/0x350
? process_one_work+0x3c0/0x3c0
kthread+0xe6/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix memory leak in error flow for subscribe event routine
In case the second xa_insert() fails, the obj_event is not released. Fix
the error unwind flow to free that memory to avoid a memory leak.
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix more uncharged while msg has more_data
In tcp_bpf_send_verdict(), if msg has more data after
tcp_bpf_sendmsg_redir():
tcp_bpf_send_verdict()
tosend = msg->sg.size //msg->sg.size = 22220
case __SK_REDIRECT:
sk_msg_return() //uncharged msg->sg.size(22220) sk->sk_forward_alloc
tcp_bpf_sendmsg_redir() //after tcp_bpf_sendmsg_redir, msg->sg.size=11000
goto more_data;
tosend = msg->sg.size //msg->sg.size = 11000
case __SK_REDIRECT:
sk_msg_return() //uncharged msg->sg.size(11000) to sk->sk_forward_alloc
The msg->sg.size(11000) has been uncharged twice, to fix we can charge the
remaining msg->sg.size before goto more data.
This issue can cause the following info:
WARNING: CPU: 0 PID: 9860 at net/core/stream.c:208 sk_stream_kill_queues+0xd4/0x1a0
Call Trace:
<TASK>
inet_csk_destroy_sock+0x55/0x110
__tcp_close+0x279/0x470
tcp_close+0x1f/0x60
inet_release+0x3f/0x80
__sock_release+0x3d/0xb0
sock_close+0x11/0x20
__fput+0x92/0x250
task_work_run+0x6a/0xa0
do_exit+0x33b/0xb60
do_group_exit+0x2f/0xa0
get_signal+0xb6/0x950
arch_do_signal_or_restart+0xac/0x2a0
? vfs_write+0x237/0x290
exit_to_user_mode_prepare+0xa9/0x200
syscall_exit_to_user_mode+0x12/0x30
do_syscall_64+0x46/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
WARNING: CPU: 0 PID: 2136 at net/ipv4/af_inet.c:155 inet_sock_destruct+0x13c/0x260
Call Trace:
<TASK>
__sk_destruct+0x24/0x1f0
sk_psock_destroy+0x19b/0x1c0
process_one_work+0x1b3/0x3c0
worker_thread+0x30/0x350
? process_one_work+0x3c0/0x3c0
kthread+0xe6/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix double free during GPU reset on DC streams
[Why]
The issue only occurs during the GPU reset code path.
We first backup the current state prior to commiting 0 streams
internally from DM to DC. This state backup contains valid link
encoder assignments.
DC will clear the link encoder assignments as part of current state
(but not the backup, since it was a copied before the commit) and
free the extra stream reference it held.
DC requires that the link encoder assignments remain cleared/invalid
prior to commiting. Since the backup still has valid assignments we
call the interface post reset to clear them. This routine also
releases the extra reference that the link encoder interface held -
resulting in a double free (and eventually a NULL pointer dereference).
[How]
We'll have to do a full DC commit anyway after GPU reset because
the stream count previously went to 0.
We don't need to retain the assignment that we had backed up, so
just copy off of the now clean current state assignment after the
reset has occcurred with the new link_enc_cfg_copy() interface.
In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: fix race between xmit and reset
There is a race between reset and the transmit paths that can lead to
ibmvnic_xmit() accessing an scrq after it has been freed in the reset
path. It can result in a crash like:
Kernel attempted to read user page (0) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000000
Faulting instruction address: 0xc0080000016189f8
Oops: Kernel access of bad area, sig: 11 [#1]
...
NIP [c0080000016189f8] ibmvnic_xmit+0x60/0xb60 [ibmvnic]
LR [c000000000c0046c] dev_hard_start_xmit+0x11c/0x280
Call Trace:
[c008000001618f08] ibmvnic_xmit+0x570/0xb60 [ibmvnic] (unreliable)
[c000000000c0046c] dev_hard_start_xmit+0x11c/0x280
[c000000000c9cfcc] sch_direct_xmit+0xec/0x330
[c000000000bfe640] __dev_xmit_skb+0x3a0/0x9d0
[c000000000c00ad4] __dev_queue_xmit+0x394/0x730
[c008000002db813c] __bond_start_xmit+0x254/0x450 [bonding]
[c008000002db8378] bond_start_xmit+0x40/0xc0 [bonding]
[c000000000c0046c] dev_hard_start_xmit+0x11c/0x280
[c000000000c00ca4] __dev_queue_xmit+0x564/0x730
[c000000000cf97e0] neigh_hh_output+0xd0/0x180
[c000000000cfa69c] ip_finish_output2+0x31c/0x5c0
[c000000000cfd244] __ip_queue_xmit+0x194/0x4f0
[c000000000d2a3c4] __tcp_transmit_skb+0x434/0x9b0
[c000000000d2d1e0] __tcp_retransmit_skb+0x1d0/0x6a0
[c000000000d2d984] tcp_retransmit_skb+0x34/0x130
[c000000000d310e8] tcp_retransmit_timer+0x388/0x6d0
[c000000000d315ec] tcp_write_timer_handler+0x1bc/0x330
[c000000000d317bc] tcp_write_timer+0x5c/0x200
[c000000000243270] call_timer_fn+0x50/0x1c0
[c000000000243704] __run_timers.part.0+0x324/0x460
[c000000000243894] run_timer_softirq+0x54/0xa0
[c000000000ea713c] __do_softirq+0x15c/0x3e0
[c000000000166258] __irq_exit_rcu+0x158/0x190
[c000000000166420] irq_exit+0x20/0x40
[c00000000002853c] timer_interrupt+0x14c/0x2b0
[c000000000009a00] decrementer_common_virt+0x210/0x220
--- interrupt: 900 at plpar_hcall_norets_notrace+0x18/0x2c
The immediate cause of the crash is the access of tx_scrq in the following
snippet during a reset, where the tx_scrq can be either NULL or an address
that will soon be invalid:
ibmvnic_xmit()
{
...
tx_scrq = adapter->tx_scrq[queue_num];
txq = netdev_get_tx_queue(netdev, queue_num);
ind_bufp = &tx_scrq->ind_buf;
if (test_bit(0, &adapter->resetting)) {
...
}
But beyond that, the call to ibmvnic_xmit() itself is not safe during a
reset and the reset path attempts to avoid this by stopping the queue in
ibmvnic_cleanup(). However just after the queue was stopped, an in-flight
ibmvnic_complete_tx() could have restarted the queue even as the reset is
progressing.
Since the queue was restarted we could get a call to ibmvnic_xmit() which
can then access the bad tx_scrq (or other fields).
We cannot however simply have ibmvnic_complete_tx() check the ->resetting
bit and skip starting the queue. This can race at the "back-end" of a good
reset which just restarted the queue but has not cleared the ->resetting
bit yet. If we skip restarting the queue due to ->resetting being true,
the queue would remain stopped indefinitely potentially leading to transmit
timeouts.
IOW ->resetting is too broad for this purpose. Instead use a new flag
that indicates whether or not the queues are active. Only the open/
reset paths control when the queues are active. ibmvnic_complete_tx()
and others wake up the queue only if the queue is marked active.
So we will have:
A. reset/open thread in ibmvnic_cleanup() and __ibmvnic_open()
->resetting = true
->tx_queues_active = false
disable tx queues
...
->tx_queues_active = true
start tx queues
B. Tx interrupt in ibmvnic_complete_tx():
if (->tx_queues_active)
netif_wake_subqueue();
To ensure that ->tx_queues_active and state of the queues are consistent,
we need a lock which:
- must also be taken in the interrupt path (ibmvnic_complete_tx())
- shared across the multiple
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
RDMA/nldev: Prevent underflow in nldev_stat_set_counter_dynamic_doit()
This code checks "index" for an upper bound but it does not check for
negatives. Change the type to unsigned to prevent underflows.
In the Linux kernel, the following vulnerability has been resolved:
net: bcmgenet: Use stronger register read/writes to assure ordering
GCC12 appears to be much smarter about its dependency tracking and is
aware that the relaxed variants are just normal loads and stores and
this is causing problems like:
[ 210.074549] ------------[ cut here ]------------
[ 210.079223] NETDEV WATCHDOG: enabcm6e4ei0 (bcmgenet): transmit queue 1 timed out
[ 210.086717] WARNING: CPU: 1 PID: 0 at net/sched/sch_generic.c:529 dev_watchdog+0x234/0x240
[ 210.095044] Modules linked in: genet(E) nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat]
[ 210.146561] ACPI CPPC: PCC check channel failed for ss: 0. ret=-110
[ 210.146927] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G E 5.17.0-rc7G12+ #58
[ 210.153226] CPPC Cpufreq:cppc_scale_freq_workfn: failed to read perf counters
[ 210.161349] Hardware name: Raspberry Pi Foundation Raspberry Pi 4 Model B/Raspberry Pi 4 Model B, BIOS EDK2-DEV 02/08/2022
[ 210.161353] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 210.161358] pc : dev_watchdog+0x234/0x240
[ 210.161364] lr : dev_watchdog+0x234/0x240
[ 210.161368] sp : ffff8000080a3a40
[ 210.161370] x29: ffff8000080a3a40 x28: ffffcd425af87000 x27: ffff8000080a3b20
[ 210.205150] x26: ffffcd425aa00000 x25: 0000000000000001 x24: ffffcd425af8ec08
[ 210.212321] x23: 0000000000000100 x22: ffffcd425af87000 x21: ffff55b142688000
[ 210.219491] x20: 0000000000000001 x19: ffff55b1426884c8 x18: ffffffffffffffff
[ 210.226661] x17: 64656d6974203120 x16: 0000000000000001 x15: 6d736e617274203a
[ 210.233831] x14: 2974656e65676d63 x13: ffffcd4259c300d8 x12: ffffcd425b07d5f0
[ 210.241001] x11: 00000000ffffffff x10: ffffcd425b07d5f0 x9 : ffffcd4258bdad9c
[ 210.248171] x8 : 00000000ffffdfff x7 : 000000000000003f x6 : 0000000000000000
[ 210.255341] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000001000
[ 210.262511] x2 : 0000000000001000 x1 : 0000000000000005 x0 : 0000000000000044
[ 210.269682] Call trace:
[ 210.272133] dev_watchdog+0x234/0x240
[ 210.275811] call_timer_fn+0x3c/0x15c
[ 210.279489] __run_timers.part.0+0x288/0x310
[ 210.283777] run_timer_softirq+0x48/0x80
[ 210.287716] __do_softirq+0x128/0x360
[ 210.291392] __irq_exit_rcu+0x138/0x140
[ 210.295243] irq_exit_rcu+0x1c/0x30
[ 210.298745] el1_interrupt+0x38/0x54
[ 210.302334] el1h_64_irq_handler+0x18/0x24
[ 210.306445] el1h_64_irq+0x7c/0x80
[ 210.309857] arch_cpu_idle+0x18/0x2c
[ 210.313445] default_idle_call+0x4c/0x140
[ 210.317470] cpuidle_idle_call+0x14c/0x1a0
[ 210.321584] do_idle+0xb0/0x100
[ 210.324737] cpu_startup_entry+0x30/0x8c
[ 210.328675] secondary_start_kernel+0xe4/0x110
[ 210.333138] __secondary_switched+0x94/0x98
The assumption when these were relaxed seems to be that device memory
would be mapped non reordering, and that other constructs
(spinlocks/etc) would provide the barriers to assure that packet data
and in memory rings/queues were ordered with respect to device
register reads/writes. This itself seems a bit sketchy, but the real
problem with GCC12 is that it is moving the actual reads/writes around
at will as though they were independent operations when in truth they
are not, but the compiler can't know that. When looking at the
assembly dumps for many of these routines its possible to see very
clean, but not strictly in program order operations occurring as the
compiler would be free to do if these weren't actually register
reads/write operations.
Its possible to suppress the timeout with a liberal bit of dma_mb()'s
sprinkled around but the device still seems unable to reliably
send/receive data. A better plan is to use the safer readl/writel
everywhere.
Since this partially reverts an older commit, which notes the use of
the relaxed variants for performance reasons. I would suggest that
any performance problems
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
ice: fix 'scheduling while atomic' on aux critical err interrupt
There's a kernel BUG splat on processing aux critical error
interrupts in ice_misc_intr():
[ 2100.917085] BUG: scheduling while atomic: swapper/15/0/0x00010000
...
[ 2101.060770] Call Trace:
[ 2101.063229] <IRQ>
[ 2101.065252] dump_stack+0x41/0x60
[ 2101.068587] __schedule_bug.cold.100+0x4c/0x58
[ 2101.073060] __schedule+0x6a4/0x830
[ 2101.076570] schedule+0x35/0xa0
[ 2101.079727] schedule_preempt_disabled+0xa/0x10
[ 2101.084284] __mutex_lock.isra.7+0x310/0x420
[ 2101.088580] ? ice_misc_intr+0x201/0x2e0 [ice]
[ 2101.093078] ice_send_event_to_aux+0x25/0x70 [ice]
[ 2101.097921] ice_misc_intr+0x220/0x2e0 [ice]
[ 2101.102232] __handle_irq_event_percpu+0x40/0x180
[ 2101.106965] handle_irq_event_percpu+0x30/0x80
[ 2101.111434] handle_irq_event+0x36/0x53
[ 2101.115292] handle_edge_irq+0x82/0x190
[ 2101.119148] handle_irq+0x1c/0x30
[ 2101.122480] do_IRQ+0x49/0xd0
[ 2101.125465] common_interrupt+0xf/0xf
[ 2101.129146] </IRQ>
...
As Andrew correctly mentioned previously[0], the following call
ladder happens:
ice_misc_intr() <- hardirq
ice_send_event_to_aux()
device_lock()
mutex_lock()
might_sleep()
might_resched() <- oops
Add a new PF state bit which indicates that an aux critical error
occurred and serve it in ice_service_task() in process context.
The new ice_pf::oicr_err_reg is read-write in both hardirq and
process contexts, but only 3 bits of non-critical data probably
aren't worth explicit synchronizing (and they're even in the same
byte [31:24]).
[0] https://lore.kernel.org/all/YeSRUVmrdmlUXHDn@lunn.ch
In the Linux kernel, the following vulnerability has been resolved:
drivers: ethernet: cpsw: fix panic when interrupt coaleceing is set via ethtool
cpsw_ethtool_begin directly returns the result of pm_runtime_get_sync
when successful.
pm_runtime_get_sync returns -error code on failure and 0 on successful
resume but also 1 when the device is already active. So the common case
for cpsw_ethtool_begin is to return 1. That leads to inconsistent calls
to pm_runtime_put in the call-chain so that pm_runtime_put is called
one too many times and as result leaving the cpsw dev behind suspended.
The suspended cpsw dev leads to an access violation later on by
different parts of the cpsw driver.
Fix this by calling the return-friendly pm_runtime_resume_and_get
function.
In the Linux kernel, the following vulnerability has been resolved:
kernel/resource: fix kfree() of bootmem memory again
Since commit ebff7d8f270d ("mem hotunplug: fix kfree() of bootmem
memory"), we could get a resource allocated during boot via
alloc_resource(). And it's required to release the resource using
free_resource(). Howerver, many people use kfree directly which will
result in kernel BUG. In order to fix this without fixing every call
site, just leak a couple of bytes in such corner case.
In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: clk-rcg2: Update logic to calculate D value for RCG
The display pixel clock has a requirement on certain newer platforms to
support M/N as (2/3) and the final D value calculated results in
underflow errors.
As the current implementation does not check for D value is within
the accepted range for a given M & N value. Update the logic to
calculate the final D value based on the range.
In the Linux kernel, the following vulnerability has been resolved:
clk: Fix clk_hw_get_clk() when dev is NULL
Any registered clk_core structure can have a NULL pointer in its dev
field. While never actually documented, this is evidenced by the wide
usage of clk_register and clk_hw_register with a NULL device pointer,
and the fact that the core of_clk_hw_register() function also passes a
NULL device pointer.
A call to clk_hw_get_clk() on a clk_hw struct whose clk_core is in that
case will result in a NULL pointer derefence when it calls dev_name() on
that NULL device pointer.
Add a test for this case and use NULL as the dev_id if the device
pointer is NULL.
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: nomadik: Add missing of_node_put() in nmk_pinctrl_probe
This node pointer is returned by of_parse_phandle() with refcount
incremented in this function. Calling of_node_put() to avoid
the refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
net: sparx5: switchdev: fix possible NULL pointer dereference
As the possible failure of the allocation, devm_kzalloc() may return NULL
pointer.
Therefore, it should be better to check the 'db' in order to prevent
the dereference of NULL pointer.
In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_ct: fix ref leak when switching zones
When switching zones or network namespaces without doing a ct clear in
between, it is now leaking a reference to the old ct entry. That's
because tcf_ct_skb_nfct_cached() returns false and
tcf_ct_flow_table_lookup() may simply overwrite it.
The fix is to, as the ct entry is not reusable, free it already at
tcf_ct_skb_nfct_cached().
In the Linux kernel, the following vulnerability has been resolved:
LSM: general protection fault in legacy_parse_param
The usual LSM hook "bail on fail" scheme doesn't work for cases where
a security module may return an error code indicating that it does not
recognize an input. In this particular case Smack sees a mount option
that it recognizes, and returns 0. A call to a BPF hook follows, which
returns -ENOPARAM, which confuses the caller because Smack has processed
its data.
The SELinux hook incorrectly returns 1 on success. There was a time
when this was correct, however the current expectation is that it
return 0 on success. This is repaired.
In the Linux kernel, the following vulnerability has been resolved:
hwrng: cavium - fix NULL but dereferenced coccicheck error
Fix following coccicheck warning:
./drivers/char/hw_random/cavium-rng-vf.c:182:17-20: ERROR:
pdev is NULL but dereferenced.
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix ext4_mb_mark_bb() with flex_bg with fast_commit
In case of flex_bg feature (which is by default enabled), extents for
any given inode might span across blocks from two different block group.
ext4_mb_mark_bb() only reads the buffer_head of block bitmap once for the
starting block group, but it fails to read it again when the extent length
boundary overflows to another block group. Then in this below loop it
accesses memory beyond the block group bitmap buffer_head and results
into a data abort.
for (i = 0; i < clen; i++)
if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
already++;
This patch adds this functionality for checking block group boundary in
ext4_mb_mark_bb() and update the buffer_head(bitmap_bh) for every different
block group.
w/o this patch, I was easily able to hit a data access abort using Power platform.
<...>
[ 74.327662] EXT4-fs error (device loop3): ext4_mb_generate_buddy:1141: group 11, block bitmap and bg descriptor inconsistent: 21248 vs 23294 free clusters
[ 74.533214] EXT4-fs (loop3): shut down requested (2)
[ 74.536705] Aborting journal on device loop3-8.
[ 74.702705] BUG: Unable to handle kernel data access on read at 0xc00000005e980000
[ 74.703727] Faulting instruction address: 0xc0000000007bffb8
cpu 0xd: Vector: 300 (Data Access) at [c000000015db7060]
pc: c0000000007bffb8: ext4_mb_mark_bb+0x198/0x5a0
lr: c0000000007bfeec: ext4_mb_mark_bb+0xcc/0x5a0
sp: c000000015db7300
msr: 800000000280b033
dar: c00000005e980000
dsisr: 40000000
current = 0xc000000027af6880
paca = 0xc00000003ffd5200 irqmask: 0x03 irq_happened: 0x01
pid = 5167, comm = mount
<...>
enter ? for help
[c000000015db7380] c000000000782708 ext4_ext_clear_bb+0x378/0x410
[c000000015db7400] c000000000813f14 ext4_fc_replay+0x1794/0x2000
[c000000015db7580] c000000000833f7c do_one_pass+0xe9c/0x12a0
[c000000015db7710] c000000000834504 jbd2_journal_recover+0x184/0x2d0
[c000000015db77c0] c000000000841398 jbd2_journal_load+0x188/0x4a0
[c000000015db7880] c000000000804de8 ext4_fill_super+0x2638/0x3e10
[c000000015db7a40] c0000000005f8404 get_tree_bdev+0x2b4/0x350
[c000000015db7ae0] c0000000007ef058 ext4_get_tree+0x28/0x40
[c000000015db7b00] c0000000005f6344 vfs_get_tree+0x44/0x100
[c000000015db7b70] c00000000063c408 path_mount+0xdd8/0xe70
[c000000015db7c40] c00000000063c8f0 sys_mount+0x450/0x550
[c000000015db7d50] c000000000035770 system_call_exception+0x4a0/0x4e0
[c000000015db7e10] c00000000000c74c system_call_common+0xec/0x250
In the Linux kernel, the following vulnerability has been resolved:
spi: fsi: Implement a timeout for polling status
The data transfer routines must poll the status register to
determine when more data can be shifted in or out. If the hardware
gets into a bad state, these polling loops may never exit. Prevent
this by returning an error if a timeout is exceeded.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not double complete bio on errors during compressed reads
I hit some weird panics while fixing up the error handling from
btrfs_lookup_bio_sums(). Turns out the compression path will complete
the bio we use if we set up any of the compression bios and then return
an error, and then btrfs_submit_data_bio() will also call bio_endio() on
the bio.
Fix this by making btrfs_submit_compressed_read() responsible for
calling bio_endio() on the bio if there are any errors. Currently it
was only doing it if we created the compression bios, otherwise it was
depending on btrfs_submit_data_bio() to do the right thing. This
creates the above problem, so fix up btrfs_submit_compressed_read() to
always call bio_endio() in case of an error, and then simply return from
btrfs_submit_data_bio() if we had to call
btrfs_submit_compressed_read().
In the Linux kernel, the following vulnerability has been resolved:
ntfs: add sanity check on allocation size
ntfs_read_inode_mount invokes ntfs_malloc_nofs with zero allocation
size. It triggers one BUG in the __ntfs_malloc function.
Fix this by adding sanity check on ni->attr_list_size.
In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: sm712fb: Fix crash in smtcfb_write()
When the sm712fb driver writes three bytes to the framebuffer, the
driver will crash:
BUG: unable to handle page fault for address: ffffc90001ffffff
RIP: 0010:smtcfb_write+0x454/0x5b0
Call Trace:
vfs_write+0x291/0xd60
? do_sys_openat2+0x27d/0x350
? __fget_light+0x54/0x340
ksys_write+0xce/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix it by removing the open-coded endianness fixup-code.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix scheduling while atomic
The driver makes a call into midlayer (fc_remote_port_delete) which can put
the thread to sleep. The thread that originates the call is in interrupt
context. The combination of the two trigger a crash. Schedule the call in
non-interrupt context where it is more safe.
kernel: BUG: scheduling while atomic: swapper/7/0/0x00010000
kernel: Call Trace:
kernel: <IRQ>
kernel: dump_stack+0x66/0x81
kernel: __schedule_bug.cold.90+0x5/0x1d
kernel: __schedule+0x7af/0x960
kernel: schedule+0x28/0x80
kernel: schedule_timeout+0x26d/0x3b0
kernel: wait_for_completion+0xb4/0x140
kernel: ? wake_up_q+0x70/0x70
kernel: __wait_rcu_gp+0x12c/0x160
kernel: ? sdev_evt_alloc+0xc0/0x180 [scsi_mod]
kernel: synchronize_sched+0x6c/0x80
kernel: ? call_rcu_bh+0x20/0x20
kernel: ? __bpf_trace_rcu_invoke_callback+0x10/0x10
kernel: sdev_evt_alloc+0xfd/0x180 [scsi_mod]
kernel: starget_for_each_device+0x85/0xb0 [scsi_mod]
kernel: ? scsi_init_io+0x360/0x3d0 [scsi_mod]
kernel: scsi_init_io+0x388/0x3d0 [scsi_mod]
kernel: device_for_each_child+0x54/0x90
kernel: fc_remote_port_delete+0x70/0xe0 [scsi_transport_fc]
kernel: qla2x00_schedule_rport_del+0x62/0xf0 [qla2xxx]
kernel: qla2x00_mark_device_lost+0x9c/0xd0 [qla2xxx]
kernel: qla24xx_handle_plogi_done_event+0x55f/0x570 [qla2xxx]
kernel: qla2x00_async_login_sp_done+0xd2/0x100 [qla2xxx]
kernel: qla24xx_logio_entry+0x13a/0x3c0 [qla2xxx]
kernel: qla24xx_process_response_queue+0x306/0x400 [qla2xxx]
kernel: qla24xx_msix_rsp_q+0x3f/0xb0 [qla2xxx]
kernel: __handle_irq_event_percpu+0x40/0x180
kernel: handle_irq_event_percpu+0x30/0x80
kernel: handle_irq_event+0x36/0x60
In the Linux kernel, the following vulnerability has been resolved:
wireguard: socket: free skb in send6 when ipv6 is disabled
I got a memory leak report:
unreferenced object 0xffff8881191fc040 (size 232):
comm "kworker/u17:0", pid 23193, jiffies 4295238848 (age 3464.870s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff814c3ef4>] slab_post_alloc_hook+0x84/0x3b0
[<ffffffff814c8977>] kmem_cache_alloc_node+0x167/0x340
[<ffffffff832974fb>] __alloc_skb+0x1db/0x200
[<ffffffff82612b5d>] wg_socket_send_buffer_to_peer+0x3d/0xc0
[<ffffffff8260e94a>] wg_packet_send_handshake_initiation+0xfa/0x110
[<ffffffff8260ec81>] wg_packet_handshake_send_worker+0x21/0x30
[<ffffffff8119c558>] process_one_work+0x2e8/0x770
[<ffffffff8119ca2a>] worker_thread+0x4a/0x4b0
[<ffffffff811a88e0>] kthread+0x120/0x160
[<ffffffff8100242f>] ret_from_fork+0x1f/0x30
In function wg_socket_send_buffer_as_reply_to_skb() or wg_socket_send_
buffer_to_peer(), the semantics of send6() is required to free skb. But
when CONFIG_IPV6 is disable, kfree_skb() is missing. This patch adds it
to fix this bug.
In the Linux kernel, the following vulnerability has been resolved:
can: mcba_usb: properly check endpoint type
Syzbot reported warning in usb_submit_urb() which is caused by wrong
endpoint type. We should check that in endpoint is actually present to
prevent this warning.
Found pipes are now saved to struct mcba_priv and code uses them
directly instead of making pipes in place.
Fail log:
| usb 5-1: BOGUS urb xfer, pipe 3 != type 1
| WARNING: CPU: 1 PID: 49 at drivers/usb/core/urb.c:502 usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
| Modules linked in:
| CPU: 1 PID: 49 Comm: kworker/1:2 Not tainted 5.17.0-rc6-syzkaller-00184-g38f80f42147f #0
| Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
| Workqueue: usb_hub_wq hub_event
| RIP: 0010:usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
| ...
| Call Trace:
| <TASK>
| mcba_usb_start drivers/net/can/usb/mcba_usb.c:662 [inline]
| mcba_usb_probe+0x8a3/0xc50 drivers/net/can/usb/mcba_usb.c:858
| usb_probe_interface+0x315/0x7f0 drivers/usb/core/driver.c:396
| call_driver_probe drivers/base/dd.c:517 [inline]
In the Linux kernel, the following vulnerability has been resolved:
rtc: gamecube: Fix refcount leak in gamecube_rtc_read_offset_from_sram
The of_find_compatible_node() function returns a node pointer with
refcount incremented, We should use of_node_put() on it when done
Add the missing of_node_put() to release the refcount.
In the Linux kernel, the following vulnerability has been resolved:
block: Fix the maximum minor value is blk_alloc_ext_minor()
ida_alloc_range(..., min, max, ...) returns values from min to max,
inclusive.
So, NR_EXT_DEVT is a valid idx returned by blk_alloc_ext_minor().
This is an issue because in device_add_disk(), this value is used in:
ddev->devt = MKDEV(disk->major, disk->first_minor);
and NR_EXT_DEVT is '(1 << MINORBITS)'.
So, should 'disk->first_minor' be NR_EXT_DEVT, it would overflow.
In the Linux kernel, the following vulnerability has been resolved:
virtio: use virtio_device_ready() in virtio_device_restore()
After waking up a suspended VM, the kernel prints the following trace
for virtio drivers which do not directly call virtio_device_ready() in
the .restore:
PM: suspend exit
irq 22: nobody cared (try booting with the "irqpoll" option)
Call Trace:
<IRQ>
dump_stack_lvl+0x38/0x49
dump_stack+0x10/0x12
__report_bad_irq+0x3a/0xaf
note_interrupt.cold+0xb/0x60
handle_irq_event+0x71/0x80
handle_fasteoi_irq+0x95/0x1e0
__common_interrupt+0x6b/0x110
common_interrupt+0x63/0xe0
asm_common_interrupt+0x1e/0x40
? __do_softirq+0x75/0x2f3
irq_exit_rcu+0x93/0xe0
sysvec_apic_timer_interrupt+0xac/0xd0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20
arch_cpu_idle+0x12/0x20
default_idle_call+0x39/0xf0
do_idle+0x1b5/0x210
cpu_startup_entry+0x20/0x30
start_secondary+0xf3/0x100
secondary_startup_64_no_verify+0xc3/0xcb
</TASK>
handlers:
[<000000008f9bac49>] vp_interrupt
[<000000008f9bac49>] vp_interrupt
Disabling IRQ #22
This happens because we don't invoke .enable_cbs callback in
virtio_device_restore(). That callback is used by some transports
(e.g. virtio-pci) to enable interrupts.
Let's fix it, by calling virtio_device_ready() as we do in
virtio_dev_probe(). This function calls .enable_cts callback and sets
DRIVER_OK status bit.
This fix also avoids setting DRIVER_OK twice for those drivers that
call virtio_device_ready() in the .restore.
In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix memory leak of uid in files registration
When there are no files for __io_sqe_files_scm() to process in the
range, it'll free everything and return. However, it forgets to put uid.
In the Linux kernel, the following vulnerability has been resolved:
net: preserve skb_end_offset() in skb_unclone_keeptruesize()
syzbot found another way to trigger the infamous WARN_ON_ONCE(delta < len)
in skb_try_coalesce() [1]
I was able to root cause the issue to kfence.
When kfence is in action, the following assertion is no longer true:
int size = xxxx;
void *ptr1 = kmalloc(size, gfp);
void *ptr2 = kmalloc(size, gfp);
if (ptr1 && ptr2)
ASSERT(ksize(ptr1) == ksize(ptr2));
We attempted to fix these issues in the blamed commits, but forgot
that TCP was possibly shifting data after skb_unclone_keeptruesize()
has been used, notably from tcp_retrans_try_collapse().
So we not only need to keep same skb->truesize value,
we also need to make sure TCP wont fill new tailroom
that pskb_expand_head() was able to get from a
addr = kmalloc(...) followed by ksize(addr)
Split skb_unclone_keeptruesize() into two parts:
1) Inline skb_unclone_keeptruesize() for the common case,
when skb is not cloned.
2) Out of line __skb_unclone_keeptruesize() for the 'slow path'.
WARNING: CPU: 1 PID: 6490 at net/core/skbuff.c:5295 skb_try_coalesce+0x1235/0x1560 net/core/skbuff.c:5295
Modules linked in:
CPU: 1 PID: 6490 Comm: syz-executor161 Not tainted 5.17.0-rc4-syzkaller-00229-g4f12b742eb2b #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:skb_try_coalesce+0x1235/0x1560 net/core/skbuff.c:5295
Code: bf 01 00 00 00 0f b7 c0 89 c6 89 44 24 20 e8 62 24 4e fa 8b 44 24 20 83 e8 01 0f 85 e5 f0 ff ff e9 87 f4 ff ff e8 cb 20 4e fa <0f> 0b e9 06 f9 ff ff e8 af b2 95 fa e9 69 f0 ff ff e8 95 b2 95 fa
RSP: 0018:ffffc900063af268 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 00000000ffffffd5 RCX: 0000000000000000
RDX: ffff88806fc05700 RSI: ffffffff872abd55 RDI: 0000000000000003
RBP: ffff88806e675500 R08: 00000000ffffffd5 R09: 0000000000000000
R10: ffffffff872ab659 R11: 0000000000000000 R12: ffff88806dd554e8
R13: ffff88806dd9bac0 R14: ffff88806dd9a2c0 R15: 0000000000000155
FS: 00007f18014f9700(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020002000 CR3: 000000006be7a000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tcp_try_coalesce net/ipv4/tcp_input.c:4651 [inline]
tcp_try_coalesce+0x393/0x920 net/ipv4/tcp_input.c:4630
tcp_queue_rcv+0x8a/0x6e0 net/ipv4/tcp_input.c:4914
tcp_data_queue+0x11fd/0x4bb0 net/ipv4/tcp_input.c:5025
tcp_rcv_established+0x81e/0x1ff0 net/ipv4/tcp_input.c:5947
tcp_v4_do_rcv+0x65e/0x980 net/ipv4/tcp_ipv4.c:1719
sk_backlog_rcv include/net/sock.h:1037 [inline]
__release_sock+0x134/0x3b0 net/core/sock.c:2779
release_sock+0x54/0x1b0 net/core/sock.c:3311
sk_wait_data+0x177/0x450 net/core/sock.c:2821
tcp_recvmsg_locked+0xe28/0x1fd0 net/ipv4/tcp.c:2457
tcp_recvmsg+0x137/0x610 net/ipv4/tcp.c:2572
inet_recvmsg+0x11b/0x5e0 net/ipv4/af_inet.c:850
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
sock_recvmsg net/socket.c:962 [inline]
____sys_recvmsg+0x2c4/0x600 net/socket.c:2632
___sys_recvmsg+0x127/0x200 net/socket.c:2674
__sys_recvmsg+0xe2/0x1a0 net/socket.c:2704
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: felix: fix possible NULL pointer dereference
As the possible failure of the allocation, kzalloc() may return NULL
pointer.
Therefore, it should be better to check the 'sgi' in order to prevent
the dereference of NULL pointer.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: fix null ptr deref on hci_sync_conn_complete_evt
This event is just specified for SCO and eSCO link types.
On the reception of a HCI_Synchronous_Connection_Complete for a BDADDR
of an existing LE connection, LE link type and a status that triggers the
second case of the packet processing a NULL pointer dereference happens,
as conn->link is NULL.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/amdgpu/amdgpu_cs: fix refcount leak of a dma_fence obj
This issue takes place in an error path in
amdgpu_cs_fence_to_handle_ioctl(). When `info->in.what` falls into
default case, the function simply returns -EINVAL, forgetting to
decrement the reference count of a dma_fence obj, which is bumped
earlier by amdgpu_cs_get_fence(). This may result in reference count
leaks.
Fix it by decreasing the refcount of specific object before returning
the error code.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix memory leak
[why]
Resource release is needed on the error handling path
to prevent memory leak.
[how]
Fix this by adding kfree on the error handling path.
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum: Guard against invalid local ports
When processing events generated by the device's firmware, the driver
protects itself from events reported for non-existent local ports, but
not for the CPU port (local port 0), which exists, but does not have all
the fields as any local port.
This can result in a NULL pointer dereference when trying access
'struct mlxsw_sp_port' fields which are not initialized for CPU port.
Commit 63b08b1f6834 ("mlxsw: spectrum: Protect driver from buggy firmware")
already handled such issue by bailing early when processing a PUDE event
reported for the CPU port.
Generalize the approach by moving the check to a common function and
making use of it in all relevant places.