Improper neutralization of special elements used in an sql command ('sql injection') in SQL Server allows an authorized attacker to elevate privileges over a network.
InDesign Desktop versions 20.5, 19.5.5 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
InDesign Desktop versions 20.5, 19.5.5 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
InCopy versions 20.5, 19.5.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
InCopy versions 20.5, 19.5.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
InCopy versions 20.5, 19.5.5 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
InDesign Desktop versions 20.5, 19.5.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
InDesign Desktop versions 20.5, 19.5.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Uncontrolled search path for the Intel MPI Library before version 2021.16 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts.
Protection mechanism failure in the UEFI firmware for the Slim Bootloader within firmware may allow an escalation of privilege. Startup code and smm adversary with a privileged user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Out-of-bounds read for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts.
Insufficient control flow management for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts.
NVIDIA Triton Inference Server for Linux and Windows contains a vulnerability where an attacker could cause a stack overflow by sending extra-large payloads. A successful exploit of this vulnerability might lead to denial of service.
NVIDIA AIStore contains a vulnerability in AuthN. A successful exploit of this vulnerability might lead to escalation of privileges, information disclosure, and data tampering.
NVIDIA AIStore contains a vulnerability in AuthN where an unauthenticated user may cause information disclosure. A successful exploit of this vulnerability may lead to information disclosure.
NVIDIA NeMo Framework for all platforms contains a vulnerability in the bert services component where malicious data created by an attacker may cause a code injection. A successful exploit of this vulnerability may lead to Code execution, Escalation of privileges, Information disclosure, and Data tampering.
Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts.
Improper input validation for some Intel QuickAssist Technology before version 2.6.0 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Buffer overflow for some Intel(R) QAT Windows software before version 2.6.0. within Ring 3: User Applications may allow a denial of service. System software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (low), integrity (low) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Unquoted search path for some PRI Driver software before version 03.03.1002 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Untrusted pointer dereference for some Intel QuickAssist Technology software before version 2.6.0 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a low complexity attack may enable data manipulation. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (high) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Incorrect default permissions in some firmware for the Intel(R) Arc(TM) B-series GPUs within Ring 1: Device Drivers may allow an escalation of privilege. System software adversary with a privileged user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are not present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Improper conditions check for some Intel(R) QAT Windows software before version 2.6.0. within Ring 3: User Applications may allow a denial of service. System software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Uncontrolled search path for some FPGA Support Package for the Intel oneAPI DPC++C++ Compiler software before version 2025.0.1 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Improper access control for some Intel(R) PresentMon before version 2.3.1 within Ring 3: User Applications may allow a denial of service. Network adversary with a privileged user combined with a high complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Uncontrolled search path for the Intel(R) Processor Identification Utility before version 8.0.43 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Improper input validation for some Intel(R) oneAPI Math Kernel Library before version 2025.2 within Ring 3: User Applications may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Incorrect default permissions for some Intel(R) Thread Director Visualizer software before version 1.1.1 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Out-of-bounds read for some Intel(R) QAT Windows software before version 2.6.0. within Ring 3: User Applications may allow a denial of service. System software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Uncontrolled search path for the Instrumentation and Tracing Technology API (ITT API) software before version 3.25.4 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Uncontrolled search path for some Intel(R) Graphics Software before version 25.22.1502.2 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Uncontrolled search path for some System Event Log Viewer Utility software for all versions within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Time-of-check time-of-use race condition for some Intel Ethernet Adapter Complete Driver Pack software before version 1.5.1.0 within Ring 3: User Applications may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Incorrect default permissions for some Intel(R) PresentMon before version 2.3.1 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Improper input validation for some Intel QuickAssist Technology software before version 2.6.0 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a low complexity attack may enable data manipulation. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Uncontrolled search path for some Intel Driver and Support Assistant before version 25.2 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable local code execution. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts.
Active debug code for some Intel UEFI reference platforms within Ring 0: Kernel may allow a denial of service and escalation of privilege. System software adversary with a privileged user combined with a low complexity attack may enable data alteration. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (high) and availability (high) impacts.
Uncontrolled search path for some Intel(R) Distribution for Python software installers before version 2025.2.0 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Time-of-check time-of-use race condition for some ACAT before version 3.13 within Ring 3: User Applications may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Out-of-bounds write for some Intel(R) QAT Windows software before version 2.6.0. within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Improper neutralization for some Intel(R) Neural Compressor software before version v3.4 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (low), integrity (low) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Incorrect default permissions for some Intel(R) One Boot Flash Update (Intel(R) OFU) software before version 14.1.31 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Untrusted pointer dereference for some Intel(R) QAT Windows software before version 2.6.0. within Ring 3: User Applications may allow an information disclosure. System software adversary with an authenticated user combined with a low complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.
Uncontrolled resource consumption for some Gaudi software before version 1.21.0 within Ring 3: User Applications may allow a denial of service. System software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts.