In the Linux kernel, the following vulnerability has been resolved:
io_uring/tctx: work around xa_store() allocation error issue
syzbot triggered the following WARN_ON:
WARNING: CPU: 0 PID: 16 at io_uring/tctx.c:51 __io_uring_free+0xfa/0x140 io_uring/tctx.c:51
which is the
WARN_ON_ONCE(!xa_empty(&tctx->xa));
sanity check in __io_uring_free() when a io_uring_task is going through
its final put. The syzbot test case includes injecting memory allocation
failures, and it very much looks like xa_store() can fail one of its
memory allocations and end up with ->head being non-NULL even though no
entries exist in the xarray.
Until this issue gets sorted out, work around it by attempting to
iterate entries in our xarray, and WARN_ON_ONCE() if one is found.
In the Linux kernel, the following vulnerability has been resolved:
sched/deadline: Fix warning in migrate_enable for boosted tasks
When running the following command:
while true; do
stress-ng --cyclic 30 --timeout 30s --minimize --quiet
done
a warning is eventually triggered:
WARNING: CPU: 43 PID: 2848 at kernel/sched/deadline.c:794
setup_new_dl_entity+0x13e/0x180
...
Call Trace:
<TASK>
? show_trace_log_lvl+0x1c4/0x2df
? enqueue_dl_entity+0x631/0x6e0
? setup_new_dl_entity+0x13e/0x180
? __warn+0x7e/0xd0
? report_bug+0x11a/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
enqueue_dl_entity+0x631/0x6e0
enqueue_task_dl+0x7d/0x120
__do_set_cpus_allowed+0xe3/0x280
__set_cpus_allowed_ptr_locked+0x140/0x1d0
__set_cpus_allowed_ptr+0x54/0xa0
migrate_enable+0x7e/0x150
rt_spin_unlock+0x1c/0x90
group_send_sig_info+0xf7/0x1a0
? kill_pid_info+0x1f/0x1d0
kill_pid_info+0x78/0x1d0
kill_proc_info+0x5b/0x110
__x64_sys_kill+0x93/0xc0
do_syscall_64+0x5c/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
RIP: 0033:0x7f0dab31f92b
This warning occurs because set_cpus_allowed dequeues and enqueues tasks
with the ENQUEUE_RESTORE flag set. If the task is boosted, the warning
is triggered. A boosted task already had its parameters set by
rt_mutex_setprio, and a new call to setup_new_dl_entity is unnecessary,
hence the WARN_ON call.
Check if we are requeueing a boosted task and avoid calling
setup_new_dl_entity if that's the case.
In the Linux kernel, the following vulnerability has been resolved:
media: qcom: camss: fix error path on configuration of power domains
There is a chance to meet runtime issues during configuration of CAMSS
power domains, because on the error path dev_pm_domain_detach() is
unexpectedly called with NULL or error pointer.
One of the simplest ways to reproduce the problem is to probe CAMSS
driver before registration of CAMSS power domains, for instance if
a platform CAMCC driver is simply not built.
Warning backtrace example:
Unable to handle kernel NULL pointer dereference at virtual address 00000000000001a2
<snip>
pc : dev_pm_domain_detach+0x8/0x48
lr : camss_probe+0x374/0x9c0
<snip>
Call trace:
dev_pm_domain_detach+0x8/0x48
platform_probe+0x70/0xf0
really_probe+0xc4/0x2a8
__driver_probe_device+0x80/0x140
driver_probe_device+0x48/0x170
__device_attach_driver+0xc0/0x148
bus_for_each_drv+0x88/0xf0
__device_attach+0xb0/0x1c0
device_initial_probe+0x1c/0x30
bus_probe_device+0xb4/0xc0
deferred_probe_work_func+0x90/0xd0
process_one_work+0x164/0x3e0
worker_thread+0x310/0x420
kthread+0x120/0x130
ret_from_fork+0x10/0x20
In the Linux kernel, the following vulnerability has been resolved:
media: amphion: Set video drvdata before register video device
The video drvdata should be set before the video device is registered,
otherwise video_drvdata() may return NULL in the open() file ops, and led
to oops.
In the Linux kernel, the following vulnerability has been resolved:
media: imx-jpeg: Set video drvdata before register video device
The video drvdata should be set before the video device is registered,
otherwise video_drvdata() may return NULL in the open() file ops, and led
to oops.
In the Linux kernel, the following vulnerability has been resolved:
media: ts2020: fix null-ptr-deref in ts2020_probe()
KASAN reported a null-ptr-deref issue when executing the following
command:
# echo ts2020 0x20 > /sys/bus/i2c/devices/i2c-0/new_device
KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
CPU: 53 UID: 0 PID: 970 Comm: systemd-udevd Not tainted 6.12.0-rc2+ #24
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009)
RIP: 0010:ts2020_probe+0xad/0xe10 [ts2020]
RSP: 0018:ffffc9000abbf598 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffffc0714809
RDX: 0000000000000002 RSI: ffff88811550be00 RDI: 0000000000000010
RBP: ffff888109868800 R08: 0000000000000001 R09: fffff52001577eb6
R10: 0000000000000000 R11: ffffc9000abbff50 R12: ffffffffc0714790
R13: 1ffff92001577eb8 R14: ffffffffc07190d0 R15: 0000000000000001
FS: 00007f95f13b98c0(0000) GS:ffff888149280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000555d2634b000 CR3: 0000000152236000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ts2020_probe+0xad/0xe10 [ts2020]
i2c_device_probe+0x421/0xb40
really_probe+0x266/0x850
...
The cause of the problem is that when using sysfs to dynamically register
an i2c device, there is no platform data, but the probe process of ts2020
needs to use platform data, resulting in a null pointer being accessed.
Solve this problem by adding checks to platform data.
In the Linux kernel, the following vulnerability has been resolved:
efi/libstub: Free correct pointer on failure
cmdline_ptr is an out parameter, which is not allocated by the function
itself, and likely points into the caller's stack.
cmdline refers to the pool allocation that should be freed when cleaning
up after a failure, so pass this instead to free_pool().
In the Linux kernel, the following vulnerability has been resolved:
media: platform: allegro-dvt: Fix possible memory leak in allocate_buffers_internal()
The buffer in the loop should be released under the exception path,
otherwise there may be a memory leak here.
To mitigate this, free the buffer when allegro_alloc_buffer fails.
In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix regression with module command in stack_trace_filter
When executing the following command:
# echo "write*:mod:ext3" > /sys/kernel/tracing/stack_trace_filter
The current mod command causes a null pointer dereference. While commit
0f17976568b3f ("ftrace: Fix regression with module command in stack_trace_filter")
has addressed part of the issue, it left a corner case unhandled, which still
results in a kernel crash.
In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu: Defer probe of clients after smmu device bound
Null pointer dereference occurs due to a race between smmu
driver probe and client driver probe, when of_dma_configure()
for client is called after the iommu_device_register() for smmu driver
probe has executed but before the driver_bound() for smmu driver
has been called.
Following is how the race occurs:
T1:Smmu device probe T2: Client device probe
really_probe()
arm_smmu_device_probe()
iommu_device_register()
really_probe()
platform_dma_configure()
of_dma_configure()
of_dma_configure_id()
of_iommu_configure()
iommu_probe_device()
iommu_init_device()
arm_smmu_probe_device()
arm_smmu_get_by_fwnode()
driver_find_device_by_fwnode()
driver_find_device()
next_device()
klist_next()
/* null ptr
assigned to smmu */
/* null ptr dereference
while smmu->streamid_mask */
driver_bound()
klist_add_tail()
When this null smmu pointer is dereferenced later in
arm_smmu_probe_device, the device crashes.
Fix this by deferring the probe of the client device
until the smmu device has bound to the arm smmu driver.
[will: Add comment]
In the Linux kernel, the following vulnerability has been resolved:
ad7780: fix division by zero in ad7780_write_raw()
In the ad7780_write_raw() , val2 can be zero, which might lead to a
division by zero error in DIV_ROUND_CLOSEST(). The ad7780_write_raw()
is based on iio_info's write_raw. While val is explicitly declared that
can be zero (in read mode), val2 is not specified to be non-zero.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to drop all discards after creating snapshot on lvm device
Piergiorgio reported a bug in bugzilla as below:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 969 at fs/f2fs/segment.c:1330
RIP: 0010:__submit_discard_cmd+0x27d/0x400 [f2fs]
Call Trace:
__issue_discard_cmd+0x1ca/0x350 [f2fs]
issue_discard_thread+0x191/0x480 [f2fs]
kthread+0xcf/0x100
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1a/0x30
w/ below testcase, it can reproduce this bug quickly:
- pvcreate /dev/vdb
- vgcreate myvg1 /dev/vdb
- lvcreate -L 1024m -n mylv1 myvg1
- mount /dev/myvg1/mylv1 /mnt/f2fs
- dd if=/dev/zero of=/mnt/f2fs/file bs=1M count=20
- sync
- rm /mnt/f2fs/file
- sync
- lvcreate -L 1024m -s -n mylv1-snapshot /dev/myvg1/mylv1
- umount /mnt/f2fs
The root cause is: it will update discard_max_bytes of mounted lvm
device to zero after creating snapshot on this lvm device, then,
__submit_discard_cmd() will pass parameter @nr_sects w/ zero value
to __blkdev_issue_discard(), it returns a NULL bio pointer, result
in panic.
This patch changes as below for fixing:
1. Let's drop all remained discards in f2fs_unfreeze() if snapshot
of lvm device is created.
2. Checking discard_max_bytes before submitting discard during
__submit_discard_cmd().
In the Linux kernel, the following vulnerability has been resolved:
ceph: pass cred pointer to ceph_mds_auth_match()
This eliminates a redundant get_current_cred() call, because
ceph_mds_check_access() has already obtained this pointer.
As a side effect, this also fixes a reference leak in
ceph_mds_auth_match(): by omitting the get_current_cred() call, no
additional cred reference is taken.
In the Linux kernel, the following vulnerability has been resolved:
i3c: master: Fix miss free init_dyn_addr at i3c_master_put_i3c_addrs()
if (dev->boardinfo && dev->boardinfo->init_dyn_addr)
^^^ here check "init_dyn_addr"
i3c_bus_set_addr_slot_status(&master->bus, dev->info.dyn_addr, ...)
^^^^
free "dyn_addr"
Fix copy/paste error "dyn_addr" by replacing it with "init_dyn_addr".
In the Linux kernel, the following vulnerability has been resolved:
slab: Fix too strict alignment check in create_cache()
On m68k, where the minimum alignment of unsigned long is 2 bytes:
Kernel panic - not syncing: __kmem_cache_create_args: Failed to create slab 'io_kiocb'. Error -22
CPU: 0 UID: 0 PID: 1 Comm: swapper Not tainted 6.12.0-atari-03776-g7eaa1f99261a #1783
Stack from 0102fe5c:
0102fe5c 00514a2b 00514a2b ffffff00 00000001 0051f5ed 00425e78 00514a2b
0041eb74 ffffffea 00000310 0051f5ed ffffffea ffffffea 00601f60 00000044
0102ff20 000e7a68 0051ab8e 004383b8 0051f5ed ffffffea 000000b8 00000007
01020c00 00000000 000e77f0 0041e5f0 005f67c0 0051f5ed 000000b6 0102fef4
00000310 0102fef4 00000000 00000016 005f676c 0060a34c 00000010 00000004
00000038 0000009a 01000000 000000b8 005f668e 0102e000 00001372 0102ff88
Call Trace: [<00425e78>] dump_stack+0xc/0x10
[<0041eb74>] panic+0xd8/0x26c
[<000e7a68>] __kmem_cache_create_args+0x278/0x2e8
[<000e77f0>] __kmem_cache_create_args+0x0/0x2e8
[<0041e5f0>] memset+0x0/0x8c
[<005f67c0>] io_uring_init+0x54/0xd2
The minimal alignment of an integral type may differ from its size,
hence is not safe to assume that an arbitrary freeptr_t (which is
basically an unsigned long) is always aligned to 4 or 8 bytes.
As nothing seems to require the additional alignment, it is safe to fix
this by relaxing the check to the actual minimum alignment of freeptr_t.
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ad7923: Fix buffer overflow for tx_buf and ring_xfer
The AD7923 was updated to support devices with 8 channels, but the size
of tx_buf and ring_xfer was not increased accordingly, leading to a
potential buffer overflow in ad7923_update_scan_mode().
In the Linux kernel, the following vulnerability has been resolved:
s390/stacktrace: Use break instead of return statement
arch_stack_walk_user_common() contains a return statement instead of a
break statement in case store_ip() fails while trying to store a callchain
entry of a user space process.
This may lead to a missing pagefault_enable() call.
If this happens any subsequent page fault of the process won't be resolved
by the page fault handler and this in turn will lead to the process being
killed.
Use a break instead of a return statement to fix this.
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: Fix NULL pointer dereference in object->file
At present, the object->file has the NULL pointer dereference problem in
ondemand-mode. The root cause is that the allocated fd and object->file
lifetime are inconsistent, and the user-space invocation to anon_fd uses
object->file. Following is the process that triggers the issue:
[write fd] [umount]
cachefiles_ondemand_fd_write_iter
fscache_cookie_state_machine
cachefiles_withdraw_cookie
if (!file) return -ENOBUFS
cachefiles_clean_up_object
cachefiles_unmark_inode_in_use
fput(object->file)
object->file = NULL
// file NULL pointer dereference!
__cachefiles_write(..., file, ...)
Fix this issue by add an additional reference count to the object->file
before write/llseek, and decrement after it finished.
In the Linux kernel, the following vulnerability has been resolved:
rcu/nocb: Fix missed RCU barrier on deoffloading
Currently, running rcutorture test with torture_type=rcu fwd_progress=8
n_barrier_cbs=8 nocbs_nthreads=8 nocbs_toggle=100 onoff_interval=60
test_boost=2, will trigger the following warning:
WARNING: CPU: 19 PID: 100 at kernel/rcu/tree_nocb.h:1061 rcu_nocb_rdp_deoffload+0x292/0x2a0
RIP: 0010:rcu_nocb_rdp_deoffload+0x292/0x2a0
Call Trace:
<TASK>
? __warn+0x7e/0x120
? rcu_nocb_rdp_deoffload+0x292/0x2a0
? report_bug+0x18e/0x1a0
? handle_bug+0x3d/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? rcu_nocb_rdp_deoffload+0x292/0x2a0
rcu_nocb_cpu_deoffload+0x70/0xa0
rcu_nocb_toggle+0x136/0x1c0
? __pfx_rcu_nocb_toggle+0x10/0x10
kthread+0xd1/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2f/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
CPU0 CPU2 CPU3
//rcu_nocb_toggle //nocb_cb_wait //rcutorture
// deoffload CPU1 // process CPU1's rdp
rcu_barrier()
rcu_segcblist_entrain()
rcu_segcblist_add_len(1);
// len == 2
// enqueue barrier
// callback to CPU1's
// rdp->cblist
rcu_do_batch()
// invoke CPU1's rdp->cblist
// callback
rcu_barrier_callback()
rcu_barrier()
mutex_lock(&rcu_state.barrier_mutex);
// still see len == 2
// enqueue barrier callback
// to CPU1's rdp->cblist
rcu_segcblist_entrain()
rcu_segcblist_add_len(1);
// len == 3
// decrement len
rcu_segcblist_add_len(-2);
kthread_parkme()
// CPU1's rdp->cblist len == 1
// Warn because there is
// still a pending barrier
// trigger warning
WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
cpus_read_unlock();
// wait CPU1 to comes online and
// invoke barrier callback on
// CPU1 rdp's->cblist
wait_for_completion(&rcu_state.barrier_completion);
// deoffload CPU4
cpus_read_lock()
rcu_barrier()
mutex_lock(&rcu_state.barrier_mutex);
// block on barrier_mutex
// wait rcu_barrier() on
// CPU3 to unlock barrier_mutex
// but CPU3 unlock barrier_mutex
// need to wait CPU1 comes online
// when CPU1 going online will block on cpus_write_lock
The above scenario will not only trigger a WARN_ON_ONCE(), but also
trigger a deadlock.
Thanks to nocb locking, a second racing rcu_barrier() on an offline CPU
will either observe the decremented callback counter down to 0 and spare
the callback enqueue, or rcuo will observe the new callback and keep
rdp->nocb_cb_sleep to false.
Therefore check rdp->nocb_cb_sleep before parking to make sure no
further rcu_barrier() is waiting on the rdp.
In the Linux kernel, the following vulnerability has been resolved:
drivers: soc: xilinx: add the missing kfree in xlnx_add_cb_for_suspend()
If we fail to allocate memory for cb_data by kmalloc, the memory
allocation for eve_data is never freed, add the missing kfree()
in the error handling path.
In the Linux kernel, the following vulnerability has been resolved:
HID: hyperv: streamline driver probe to avoid devres issues
It was found that unloading 'hid_hyperv' module results in a devres
complaint:
...
hv_vmbus: unregistering driver hid_hyperv
------------[ cut here ]------------
WARNING: CPU: 2 PID: 3983 at drivers/base/devres.c:691 devres_release_group+0x1f2/0x2c0
...
Call Trace:
<TASK>
? devres_release_group+0x1f2/0x2c0
? __warn+0xd1/0x1c0
? devres_release_group+0x1f2/0x2c0
? report_bug+0x32a/0x3c0
? handle_bug+0x53/0xa0
? exc_invalid_op+0x18/0x50
? asm_exc_invalid_op+0x1a/0x20
? devres_release_group+0x1f2/0x2c0
? devres_release_group+0x90/0x2c0
? rcu_is_watching+0x15/0xb0
? __pfx_devres_release_group+0x10/0x10
hid_device_remove+0xf5/0x220
device_release_driver_internal+0x371/0x540
? klist_put+0xf3/0x170
bus_remove_device+0x1f1/0x3f0
device_del+0x33f/0x8c0
? __pfx_device_del+0x10/0x10
? cleanup_srcu_struct+0x337/0x500
hid_destroy_device+0xc8/0x130
mousevsc_remove+0xd2/0x1d0 [hid_hyperv]
device_release_driver_internal+0x371/0x540
driver_detach+0xc5/0x180
bus_remove_driver+0x11e/0x2a0
? __mutex_unlock_slowpath+0x160/0x5e0
vmbus_driver_unregister+0x62/0x2b0 [hv_vmbus]
...
And the issue seems to be that the corresponding devres group is not
allocated. Normally, devres_open_group() is called from
__hid_device_probe() but Hyper-V HID driver overrides 'hid_dev->driver'
with 'mousevsc_hid_driver' stub and basically re-implements
__hid_device_probe() by calling hid_parse() and hid_hw_start() but not
devres_open_group(). hid_device_probe() does not call __hid_device_probe()
for it. Later, when the driver is removed, hid_device_remove() calls
devres_release_group() as it doesn't check whether hdev->driver was
initially overridden or not.
The issue seems to be related to the commit 62c68e7cee33 ("HID: ensure
timely release of driver-allocated resources") but the commit itself seems
to be correct.
Fix the issue by dropping the 'hid_dev->driver' override and using
hid_register_driver()/hid_unregister_driver() instead. Alternatively, it
would have been possible to rely on the default handling but
HID_CONNECT_DEFAULT implies HID_CONNECT_HIDRAW and it doesn't seem to work
for mousevsc as-is.
In the Linux kernel, the following vulnerability has been resolved:
udmabuf: change folios array from kmalloc to kvmalloc
When PAGE_SIZE 4096, MAX_PAGE_ORDER 10, 64bit machine,
page_alloc only support 4MB.
If above this, trigger this warn and return NULL.
udmabuf can change size limit, if change it to 3072(3GB), and then alloc
3GB udmabuf, will fail create.
[ 4080.876581] ------------[ cut here ]------------
[ 4080.876843] WARNING: CPU: 3 PID: 2015 at mm/page_alloc.c:4556 __alloc_pages+0x2c8/0x350
[ 4080.878839] RIP: 0010:__alloc_pages+0x2c8/0x350
[ 4080.879470] Call Trace:
[ 4080.879473] <TASK>
[ 4080.879473] ? __alloc_pages+0x2c8/0x350
[ 4080.879475] ? __warn.cold+0x8e/0xe8
[ 4080.880647] ? __alloc_pages+0x2c8/0x350
[ 4080.880909] ? report_bug+0xff/0x140
[ 4080.881175] ? handle_bug+0x3c/0x80
[ 4080.881556] ? exc_invalid_op+0x17/0x70
[ 4080.881559] ? asm_exc_invalid_op+0x1a/0x20
[ 4080.882077] ? udmabuf_create+0x131/0x400
Because MAX_PAGE_ORDER, kmalloc can max alloc 4096 * (1 << 10), 4MB
memory, each array entry is pointer(8byte), so can save 524288 pages(2GB).
Further more, costly order(order 3) may not be guaranteed that it can be
applied for, due to fragmentation.
This patch change udmabuf array use kvmalloc_array, this can fallback
alloc into vmalloc, which can guarantee allocation for any size and does
not affect the performance of kmalloc allocations.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Skip Rx TID cleanup for self peer
During peer create, dp setup for the peer is done where Rx TID is
updated for all the TIDs. Peer object for self peer will not go through
dp setup.
When core halts, dp cleanup is done for all the peers. While cleanup,
rx_tid::ab is accessed which causes below stack trace for self peer.
WARNING: CPU: 6 PID: 12297 at drivers/net/wireless/ath/ath12k/dp_rx.c:851
Call Trace:
__warn+0x7b/0x1a0
ath12k_dp_rx_frags_cleanup+0xd2/0xe0 [ath12k]
report_bug+0x10b/0x200
handle_bug+0x3f/0x70
exc_invalid_op+0x13/0x60
asm_exc_invalid_op+0x16/0x20
ath12k_dp_rx_frags_cleanup+0xd2/0xe0 [ath12k]
ath12k_dp_rx_frags_cleanup+0xca/0xe0 [ath12k]
ath12k_dp_rx_peer_tid_cleanup+0x39/0xa0 [ath12k]
ath12k_mac_peer_cleanup_all+0x61/0x100 [ath12k]
ath12k_core_halt+0x3b/0x100 [ath12k]
ath12k_core_reset+0x494/0x4c0 [ath12k]
sta object in peer will be updated when remote peer is created. Hence
use peer::sta to detect the self peer and skip the cleanup.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3
In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Prevent recovery invocation during probe and resume
Refactor IPC send and receive functions to allow correct
handling of operations that should not trigger a recovery process.
Expose ivpu_send_receive_internal(), which is now utilized by the D0i3
entry, DCT initialization, and HWS initialization functions.
These functions have been modified to return error codes gracefully,
rather than initiating recovery.
The updated functions are invoked within ivpu_probe() and ivpu_resume(),
ensuring that any errors encountered during these stages result in a proper
teardown or shutdown sequence. The previous approach of triggering recovery
within these functions could lead to a race condition, potentially causing
undefined behavior and kernel crashes due to null pointer dereferences.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: Fix memcpy() field-spanning write warning in mwifiex_config_scan()
Replace one-element array with a flexible-array member in `struct
mwifiex_ie_types_wildcard_ssid_params` to fix the following warning
on a MT8173 Chromebook (mt8173-elm-hana):
[ 356.775250] ------------[ cut here ]------------
[ 356.784543] memcpy: detected field-spanning write (size 6) of single field "wildcard_ssid_tlv->ssid" at drivers/net/wireless/marvell/mwifiex/scan.c:904 (size 1)
[ 356.813403] WARNING: CPU: 3 PID: 742 at drivers/net/wireless/marvell/mwifiex/scan.c:904 mwifiex_scan_networks+0x4fc/0xf28 [mwifiex]
The "(size 6)" above is exactly the length of the SSID of the network
this device was connected to. The source of the warning looks like:
ssid_len = user_scan_in->ssid_list[i].ssid_len;
[...]
memcpy(wildcard_ssid_tlv->ssid,
user_scan_in->ssid_list[i].ssid, ssid_len);
There is a #define WILDCARD_SSID_TLV_MAX_SIZE that uses sizeof() on this
struct, but it already didn't account for the size of the one-element
array, so it doesn't need to be changed.
In the Linux kernel, the following vulnerability has been resolved:
drm: xlnx: zynqmp_disp: layer may be null while releasing
layer->info can be null if we have an error on the first layer in
zynqmp_disp_create_layers
In the Linux kernel, the following vulnerability has been resolved:
wifi: cw1200: Fix potential NULL dereference
A recent refactoring was identified by static analysis to
cause a potential NULL dereference, fix this!
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: coex: check NULL return of kmalloc in btc_fw_set_monreg()
kmalloc may fail, return value might be NULL and will cause
NULL pointer dereference. Add check NULL return of kmalloc in
btc_fw_set_monreg().
In the Linux kernel, the following vulnerability has been resolved:
isofs: avoid memory leak in iocharset
A memleak was found as below:
unreferenced object 0xffff0000d10164d8 (size 8):
comm "pool-udisksd", pid 108217, jiffies 4295408555
hex dump (first 8 bytes):
75 74 66 38 00 cc cc cc utf8....
backtrace (crc de430d31):
[<ffff800081046e6c>] kmemleak_alloc+0xb8/0xc8
[<ffff8000803e6c3c>] __kmalloc_node_track_caller_noprof+0x380/0x474
[<ffff800080363b74>] kstrdup+0x70/0xfc
[<ffff80007bb3c6a4>] isofs_parse_param+0x228/0x2c0 [isofs]
[<ffff8000804d7f68>] vfs_parse_fs_param+0xf4/0x164
[<ffff8000804d8064>] vfs_parse_fs_string+0x8c/0xd4
[<ffff8000804d815c>] vfs_parse_monolithic_sep+0xb0/0xfc
[<ffff8000804d81d8>] generic_parse_monolithic+0x30/0x3c
[<ffff8000804d8bfc>] parse_monolithic_mount_data+0x40/0x4c
[<ffff8000804b6a64>] path_mount+0x6c4/0x9ec
[<ffff8000804b6e38>] do_mount+0xac/0xc4
[<ffff8000804b7494>] __arm64_sys_mount+0x16c/0x2b0
[<ffff80008002b8dc>] invoke_syscall+0x7c/0x104
[<ffff80008002ba44>] el0_svc_common.constprop.1+0xe0/0x104
[<ffff80008002ba94>] do_el0_svc+0x2c/0x38
[<ffff800081041108>] el0_svc+0x3c/0x1b8
The opt->iocharset is freed inside the isofs_fill_super function,
But there may be situations where it's not possible to
enter this function.
For example, in the get_tree_bdev_flags function,when
encountering the situation where "Can't mount, would change RO state,"
In such a case, isofs_fill_super will not have the opportunity
to be called,which means that opt->iocharset will not have the chance
to be freed,ultimately leading to a memory leak.
Let's move the memory freeing of opt->iocharset into
isofs_free_fc function.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usx2y: Use snd_card_free_when_closed() at disconnection
The USB disconnect callback is supposed to be short and not too-long
waiting. OTOH, the current code uses snd_card_free() at
disconnection, but this waits for the close of all used fds, hence it
can take long. It eventually blocks the upper layer USB ioctls, which
may trigger a soft lockup.
An easy workaround is to replace snd_card_free() with
snd_card_free_when_closed(). This variant returns immediately while
the release of resources is done asynchronously by the card device
release at the last close.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: us122l: Use snd_card_free_when_closed() at disconnection
The USB disconnect callback is supposed to be short and not too-long
waiting. OTOH, the current code uses snd_card_free() at
disconnection, but this waits for the close of all used fds, hence it
can take long. It eventually blocks the upper layer USB ioctls, which
may trigger a soft lockup.
An easy workaround is to replace snd_card_free() with
snd_card_free_when_closed(). This variant returns immediately while
the release of resources is done asynchronously by the card device
release at the last close.
The loop of us122l->mmap_count check is dropped as well. The check is
useless for the asynchronous operation with *_when_closed().
In the Linux kernel, the following vulnerability has been resolved:
ALSA: caiaq: Use snd_card_free_when_closed() at disconnection
The USB disconnect callback is supposed to be short and not too-long
waiting. OTOH, the current code uses snd_card_free() at
disconnection, but this waits for the close of all used fds, hence it
can take long. It eventually blocks the upper layer USB ioctls, which
may trigger a soft lockup.
An easy workaround is to replace snd_card_free() with
snd_card_free_when_closed(). This variant returns immediately while
the release of resources is done asynchronously by the card device
release at the last close.
This patch also splits the code to the disconnect and the free phases;
the former is called immediately at the USB disconnect callback while
the latter is called from the card destructor.
In the Linux kernel, the following vulnerability has been resolved:
xsk: Free skb when TX metadata options are invalid
When a new skb is allocated for transmitting an xsk descriptor, i.e., for
every non-multibuf descriptor or the first frag of a multibuf descriptor,
but the descriptor is later found to have invalid options set for the TX
metadata, the new skb is never freed. This can leak skbs until the send
buffer is full which makes sending more packets impossible.
Fix this by freeing the skb in the error path if we are currently dealing
with the first frag, i.e., an skb allocated in this iteration of
xsk_build_skb.
In the Linux kernel, the following vulnerability has been resolved:
erofs: fix file-backed mounts over FUSE
syzbot reported a null-ptr-deref in fuse_read_args_fill:
fuse_read_folio+0xb0/0x100 fs/fuse/file.c:905
filemap_read_folio+0xc6/0x2a0 mm/filemap.c:2367
do_read_cache_folio+0x263/0x5c0 mm/filemap.c:3825
read_mapping_folio include/linux/pagemap.h:1011 [inline]
erofs_bread+0x34d/0x7e0 fs/erofs/data.c:41
erofs_read_superblock fs/erofs/super.c:281 [inline]
erofs_fc_fill_super+0x2b9/0x2500 fs/erofs/super.c:625
Unlike most filesystems, some network filesystems and FUSE need
unavoidable valid `file` pointers for their read I/Os [1].
Anyway, those use cases need to be supported too.
[1] https://docs.kernel.org/filesystems/vfs.html
In the Linux kernel, the following vulnerability has been resolved:
erofs: handle NONHEAD !delta[1] lclusters gracefully
syzbot reported a WARNING in iomap_iter_done:
iomap_fiemap+0x73b/0x9b0 fs/iomap/fiemap.c:80
ioctl_fiemap fs/ioctl.c:220 [inline]
Generally, NONHEAD lclusters won't have delta[1]==0, except for crafted
images and filesystems created by pre-1.0 mkfs versions.
Previously, it would immediately bail out if delta[1]==0, which led to
inadequate decompressed lengths (thus FIEMAP is impacted). Treat it as
delta[1]=1 to work around these legacy mkfs versions.
`lclusterbits > 14` is illegal for compact indexes, error out too.
In the Linux kernel, the following vulnerability has been resolved:
unicode: Fix utf8_load() error path
utf8_load() requests the symbol "utf8_data_table" and then checks if the
requested UTF-8 version is supported. If it's unsupported, it tries to
put the data table using symbol_put(). If an unsupported version is
requested, symbol_put() fails like this:
kernel BUG at kernel/module/main.c:786!
RIP: 0010:__symbol_put+0x93/0xb0
Call Trace:
<TASK>
? __die_body.cold+0x19/0x27
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x65/0x80
? __symbol_put+0x93/0xb0
? exc_invalid_op+0x51/0x70
? __symbol_put+0x93/0xb0
? asm_exc_invalid_op+0x1a/0x20
? __pfx_cmp_name+0x10/0x10
? __symbol_put+0x93/0xb0
? __symbol_put+0x62/0xb0
utf8_load+0xf8/0x150
That happens because symbol_put() expects the unique string that
identify the symbol, instead of a pointer to the loaded symbol. Fix that
by using such string.
In the Linux kernel, the following vulnerability has been resolved:
cpufreq: CPPC: Fix possible null-ptr-deref for cpufreq_cpu_get_raw()
cpufreq_cpu_get_raw() may return NULL if the cpu is not in
policy->cpus cpu mask and it will cause null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
cpufreq: CPPC: Fix possible null-ptr-deref for cppc_get_cpu_cost()
cpufreq_cpu_get_raw() may return NULL if the cpu is not in
policy->cpus cpu mask and it will cause null pointer dereference,
so check NULL for cppc_get_cpu_cost().
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix NULL pointer derefernce in hns_roce_map_mr_sg()
ib_map_mr_sg() allows ULPs to specify NULL as the sg_offset argument.
The driver needs to check whether it is a NULL pointer before
dereferencing it.
In the Linux kernel, the following vulnerability has been resolved:
iommu/tegra241-cmdqv: Fix alignment failure at max_n_shift
When configuring a kernel with PAGE_SIZE=4KB, depending on its setting of
CONFIG_CMA_ALIGNMENT, VCMDQ_LOG2SIZE_MAX=19 could fail the alignment test
and trigger a WARN_ON:
WARNING: at drivers/iommu/arm/arm-smmu-v3/arm-smmu-v3.c:3646
Call trace:
arm_smmu_init_one_queue+0x15c/0x210
tegra241_cmdqv_init_structures+0x114/0x338
arm_smmu_device_probe+0xb48/0x1d90
Fix it by capping max_n_shift to CMDQ_MAX_SZ_SHIFT as SMMUv3 CMDQ does.
In the Linux kernel, the following vulnerability has been resolved:
clk: ralink: mtmips: fix clocks probe order in oldest ralink SoCs
Base clocks are the first in being probed and are real dependencies of the
rest of fixed, factor and peripheral clocks. For old ralink SoCs RT2880,
RT305x and RT3883 'xtal' must be defined first since in any other case,
when fixed clocks are probed they are delayed until 'xtal' is probed so the
following warning appears:
WARNING: CPU: 0 PID: 0 at drivers/clk/ralink/clk-mtmips.c:499 rt3883_bus_recalc_rate+0x98/0x138
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 6.6.43 #0
Stack : 805e58d0 00000000 00000004 8004f950 00000000 00000004 00000000 00000000
80669c54 80830000 80700000 805ae570 80670068 00000001 80669bf8 00000000
00000000 00000000 805ae570 80669b38 00000020 804db7dc 00000000 00000000
203a6d6d 80669b78 80669e48 70617773 00000000 805ae570 00000000 00000009
00000000 00000001 00000004 00000001 00000000 00000000 83fe43b0 00000000
...
Call Trace:
[<800065d0>] show_stack+0x64/0xf4
[<804bca14>] dump_stack_lvl+0x38/0x60
[<800218ac>] __warn+0x94/0xe4
[<8002195c>] warn_slowpath_fmt+0x60/0x94
[<80259ff8>] rt3883_bus_recalc_rate+0x98/0x138
[<80254530>] __clk_register+0x568/0x688
[<80254838>] of_clk_hw_register+0x18/0x2c
[<8070b910>] rt2880_clk_of_clk_init_driver+0x18c/0x594
[<8070b628>] of_clk_init+0x1c0/0x23c
[<806fc448>] plat_time_init+0x58/0x18c
[<806fdaf0>] time_init+0x10/0x6c
[<806f9bc4>] start_kernel+0x458/0x67c
---[ end trace 0000000000000000 ]---
When this driver was mainlined we could not find any active users of old
ralink SoCs so we cannot perform any real tests for them. Now, one user
of a Belkin f9k1109 version 1 device which uses RT3883 SoC appeared and
reported some issues in openWRT:
- https://github.com/openwrt/openwrt/issues/16054
Thus, define a 'rt2880_xtal_recalc_rate()' just returning the expected
frequency 40Mhz and use it along the old ralink SoCs to have a correct
boot trace with no warnings and a working clock plan from the beggining.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to account dirty data in __get_secs_required()
It will trigger system panic w/ testcase in [1]:
------------[ cut here ]------------
kernel BUG at fs/f2fs/segment.c:2752!
RIP: 0010:new_curseg+0xc81/0x2110
Call Trace:
f2fs_allocate_data_block+0x1c91/0x4540
do_write_page+0x163/0xdf0
f2fs_outplace_write_data+0x1aa/0x340
f2fs_do_write_data_page+0x797/0x2280
f2fs_write_single_data_page+0x16cd/0x2190
f2fs_write_cache_pages+0x994/0x1c80
f2fs_write_data_pages+0x9cc/0xea0
do_writepages+0x194/0x7a0
filemap_fdatawrite_wbc+0x12b/0x1a0
__filemap_fdatawrite_range+0xbb/0xf0
file_write_and_wait_range+0xa1/0x110
f2fs_do_sync_file+0x26f/0x1c50
f2fs_sync_file+0x12b/0x1d0
vfs_fsync_range+0xfa/0x230
do_fsync+0x3d/0x80
__x64_sys_fsync+0x37/0x50
x64_sys_call+0x1e88/0x20d0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The root cause is if checkpoint_disabling and lfs_mode are both on,
it will trigger OPU for all overwritten data, it may cost more free
segment than expected, so f2fs must account those data correctly to
calculate cosumed free segments later, and return ENOSPC earlier to
avoid run out of free segment during block allocation.
[1] https://lore.kernel.org/fstests/20241015025106.3203676-1-chao@kernel.org/