In the Linux kernel, the following vulnerability has been resolved:
net: dsa: bcm_sf2: don't use devres for mdiobus
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The Starfighter 2 is a platform device, so the initial set of
constraints that I thought would cause this (I2C or SPI buses which call
->remove on ->shutdown) do not apply. But there is one more which
applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the bcm_sf2 switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The bcm_sf2 driver has the code structure in place for orderly mdiobus
removal, so just replace devm_mdiobus_alloc() with the non-devres
variant, and add manual free where necessary, to ensure that we don't
let devres free a still-registered bus.
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: seville: register the mdiobus under devres
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The Seville VSC9959 switch is a platform device, so the initial set of
constraints that I thought would cause this (I2C or SPI buses which call
->remove on ->shutdown) do not apply. But there is one more which
applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the seville switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The seville driver has a code structure that could accommodate both the
mdiobus_unregister and mdiobus_free calls, but it has an external
dependency upon mscc_miim_setup() from mdio-mscc-miim.c, which calls
devm_mdiobus_alloc_size() on its behalf. So rather than restructuring
that, and exporting yet one more symbol mscc_miim_teardown(), let's work
with devres and replace of_mdiobus_register with the devres variant.
When we use all-devres, we can ensure that devres doesn't free a
still-registered bus (it either runs both callbacks, or none).
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: felix: don't use devres for mdiobus
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The Felix VSC9959 switch is a PCI device, so the initial set of
constraints that I thought would cause this (I2C or SPI buses which call
->remove on ->shutdown) do not apply. But there is one more which
applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the felix switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The felix driver has the code structure in place for orderly mdiobus
removal, so just replace devm_mdiobus_alloc_size() with the non-devres
variant, and add manual free where necessary, to ensure that we don't
let devres free a still-registered bus.
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: lantiq_gswip: don't use devres for mdiobus
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The GSWIP switch is a platform device, so the initial set of constraints
that I thought would cause this (I2C or SPI buses which call ->remove on
->shutdown) do not apply. But there is one more which applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the GSWIP switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The gswip driver has the code structure in place for orderly mdiobus
removal, so just replace devm_mdiobus_alloc() with the non-devres
variant, and add manual free where necessary, to ensure that we don't
let devres free a still-registered bus.
In the Linux kernel, the following vulnerability has been resolved:
eeprom: ee1004: limit i2c reads to I2C_SMBUS_BLOCK_MAX
Commit effa453168a7 ("i2c: i801: Don't silently correct invalid transfer
size") revealed that ee1004_eeprom_read() did not properly limit how
many bytes to read at once.
In particular, i2c_smbus_read_i2c_block_data_or_emulated() takes the
length to read as an u8. If count == 256 after taking into account the
offset and page boundary, the cast to u8 overflows. And this is common
when user space tries to read the entire EEPROM at once.
To fix it, limit each read to I2C_SMBUS_BLOCK_MAX (32) bytes, already
the maximum length i2c_smbus_read_i2c_block_data_or_emulated() allows.
In the Linux kernel, the following vulnerability has been resolved:
fs/proc: task_mmu.c: don't read mapcount for migration entry
The syzbot reported the below BUG:
kernel BUG at include/linux/page-flags.h:785!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 4392 Comm: syz-executor560 Not tainted 5.16.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:PageDoubleMap include/linux/page-flags.h:785 [inline]
RIP: 0010:__page_mapcount+0x2d2/0x350 mm/util.c:744
Call Trace:
page_mapcount include/linux/mm.h:837 [inline]
smaps_account+0x470/0xb10 fs/proc/task_mmu.c:466
smaps_pte_entry fs/proc/task_mmu.c:538 [inline]
smaps_pte_range+0x611/0x1250 fs/proc/task_mmu.c:601
walk_pmd_range mm/pagewalk.c:128 [inline]
walk_pud_range mm/pagewalk.c:205 [inline]
walk_p4d_range mm/pagewalk.c:240 [inline]
walk_pgd_range mm/pagewalk.c:277 [inline]
__walk_page_range+0xe23/0x1ea0 mm/pagewalk.c:379
walk_page_vma+0x277/0x350 mm/pagewalk.c:530
smap_gather_stats.part.0+0x148/0x260 fs/proc/task_mmu.c:768
smap_gather_stats fs/proc/task_mmu.c:741 [inline]
show_smap+0xc6/0x440 fs/proc/task_mmu.c:822
seq_read_iter+0xbb0/0x1240 fs/seq_file.c:272
seq_read+0x3e0/0x5b0 fs/seq_file.c:162
vfs_read+0x1b5/0x600 fs/read_write.c:479
ksys_read+0x12d/0x250 fs/read_write.c:619
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The reproducer was trying to read /proc/$PID/smaps when calling
MADV_FREE at the mean time. MADV_FREE may split THPs if it is called
for partial THP. It may trigger the below race:
CPU A CPU B
----- -----
smaps walk: MADV_FREE:
page_mapcount()
PageCompound()
split_huge_page()
page = compound_head(page)
PageDoubleMap(page)
When calling PageDoubleMap() this page is not a tail page of THP anymore
so the BUG is triggered.
This could be fixed by elevated refcount of the page before calling
mapcount, but that would prevent it from counting migration entries, and
it seems overkilling because the race just could happen when PMD is
split so all PTE entries of tail pages are actually migration entries,
and smaps_account() does treat migration entries as mapcount == 1 as
Kirill pointed out.
Add a new parameter for smaps_account() to tell this entry is migration
entry then skip calling page_mapcount(). Don't skip getting mapcount
for device private entries since they do track references with mapcount.
Pagemap also has the similar issue although it was not reported. Fixed
it as well.
[shy828301@gmail.com: v4]
[nathan@kernel.org: avoid unused variable warning in pagemap_pmd_range()]
In the Linux kernel, the following vulnerability has been resolved:
perf: Fix list corruption in perf_cgroup_switch()
There's list corruption on cgrp_cpuctx_list. This happens on the
following path:
perf_cgroup_switch: list_for_each_entry(cgrp_cpuctx_list)
cpu_ctx_sched_in
ctx_sched_in
ctx_pinned_sched_in
merge_sched_in
perf_cgroup_event_disable: remove the event from the list
Use list_for_each_entry_safe() to allow removing an entry during
iteration.
In the Linux kernel, the following vulnerability has been resolved:
s390/cio: verify the driver availability for path_event call
If no driver is attached to a device or the driver does not provide the
path_event function, an FCES path-event on this device could end up in a
kernel-panic. Verify the driver availability before the path_event
function call.
In the Linux kernel, the following vulnerability has been resolved:
mm: don't try to NUMA-migrate COW pages that have other uses
Oded Gabbay reports that enabling NUMA balancing causes corruption with
his Gaudi accelerator test load:
"All the details are in the bug, but the bottom line is that somehow,
this patch causes corruption when the numa balancing feature is
enabled AND we don't use process affinity AND we use GUP to pin pages
so our accelerator can DMA to/from system memory.
Either disabling numa balancing, using process affinity to bind to
specific numa-node or reverting this patch causes the bug to
disappear"
and Oded bisected the issue to commit 09854ba94c6a ("mm: do_wp_page()
simplification").
Now, the NUMA balancing shouldn't actually be changing the writability
of a page, and as such shouldn't matter for COW. But it appears it
does. Suspicious.
However, regardless of that, the condition for enabling NUMA faults in
change_pte_range() is nonsensical. It uses "page_mapcount(page)" to
decide if a COW page should be NUMA-protected or not, and that makes
absolutely no sense.
The number of mappings a page has is irrelevant: not only does GUP get a
reference to a page as in Oded's case, but the other mappings migth be
paged out and the only reference to them would be in the page count.
Since we should never try to NUMA-balance a page that we can't move
anyway due to other references, just fix the code to use 'page_count()'.
Oded confirms that that fixes his issue.
Now, this does imply that something in NUMA balancing ends up changing
page protections (other than the obvious one of making the page
inaccessible to get the NUMA faulting information). Otherwise the COW
simplification wouldn't matter - since doing the GUP on the page would
make sure it's writable.
The cause of that permission change would be good to figure out too,
since it clearly results in spurious COW events - but fixing the
nonsensical test that just happened to work before is obviously the
CorrectThing(tm) to do regardless.
In the Linux kernel, the following vulnerability has been resolved:
vsock: remove vsock from connected table when connect is interrupted by a signal
vsock_connect() expects that the socket could already be in the
TCP_ESTABLISHED state when the connecting task wakes up with a signal
pending. If this happens the socket will be in the connected table, and
it is not removed when the socket state is reset. In this situation it's
common for the process to retry connect(), and if the connection is
successful the socket will be added to the connected table a second
time, corrupting the list.
Prevent this by calling vsock_remove_connected() if a signal is received
while waiting for a connection. This is harmless if the socket is not in
the connected table, and if it is in the table then removing it will
prevent list corruption from a double add.
Note for backporting: this patch requires d5afa82c977e ("vsock: correct
removal of socket from the list"), which is in all current stable trees
except 4.9.y.
In the Linux kernel, the following vulnerability has been resolved:
net/smc: Avoid overwriting the copies of clcsock callback functions
The callback functions of clcsock will be saved and replaced during
the fallback. But if the fallback happens more than once, then the
copies of these callback functions will be overwritten incorrectly,
resulting in a loop call issue:
clcsk->sk_error_report
|- smc_fback_error_report() <------------------------------|
|- smc_fback_forward_wakeup() | (loop)
|- clcsock_callback() (incorrectly overwritten) |
|- smc->clcsk_error_report() ------------------|
So this patch fixes the issue by saving these function pointers only
once in the fallback and avoiding overwriting.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: change vm->task_info handling
This patch changes the handling and lifecycle of vm->task_info object.
The major changes are:
- vm->task_info is a dynamically allocated ptr now, and its uasge is
reference counted.
- introducing two new helper funcs for task_info lifecycle management
- amdgpu_vm_get_task_info: reference counts up task_info before
returning this info
- amdgpu_vm_put_task_info: reference counts down task_info
- last put to task_info() frees task_info from the vm.
This patch also does logistical changes required for existing usage
of vm->task_info.
V2: Do not block all the prints when task_info not found (Felix)
V3: Fixed review comments from Felix
- Fix wrong indentation
- No debug message for -ENOMEM
- Add NULL check for task_info
- Do not duplicate the debug messages (ti vs no ti)
- Get first reference of task_info in vm_init(), put last
in vm_fini()
V4: Fixed review comments from Felix
- fix double reference increment in create_task_info
- change amdgpu_vm_get_task_info_pasid
- additional changes in amdgpu_gem.c while porting
Race condition in Team Chat for some Zoom Workplace Apps and SDKs for Windows may allow an authenticated user to conduct information disclosure via network access.
Integrity check in the installer for some Zoom Workplace Apps and SDKs for Windows may allow an authenticated user to conduct a privilege escalation via local access.
In the Linux kernel, the following vulnerability has been resolved:
netrom: Fix a memory leak in nr_heartbeat_expiry()
syzbot reported a memory leak in nr_create() [0].
Commit 409db27e3a2e ("netrom: Fix use-after-free of a listening socket.")
added sock_hold() to the nr_heartbeat_expiry() function, where
a) a socket has a SOCK_DESTROY flag or
b) a listening socket has a SOCK_DEAD flag.
But in the case "a," when the SOCK_DESTROY flag is set, the file descriptor
has already been closed and the nr_release() function has been called.
So it makes no sense to hold the reference count because no one will
call another nr_destroy_socket() and put it as in the case "b."
nr_connect
nr_establish_data_link
nr_start_heartbeat
nr_release
switch (nr->state)
case NR_STATE_3
nr->state = NR_STATE_2
sock_set_flag(sk, SOCK_DESTROY);
nr_rx_frame
nr_process_rx_frame
switch (nr->state)
case NR_STATE_2
nr_state2_machine()
nr_disconnect()
nr_sk(sk)->state = NR_STATE_0
sock_set_flag(sk, SOCK_DEAD)
nr_heartbeat_expiry
switch (nr->state)
case NR_STATE_0
if (sock_flag(sk, SOCK_DESTROY) ||
(sk->sk_state == TCP_LISTEN
&& sock_flag(sk, SOCK_DEAD)))
sock_hold() // ( !!! )
nr_destroy_socket()
To fix the memory leak, let's call sock_hold() only for a listening socket.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with Syzkaller.
[0]: https://syzkaller.appspot.com/bug?extid=d327a1f3b12e1e206c16
In the Linux kernel, the following vulnerability has been resolved:
netpoll: Fix race condition in netpoll_owner_active
KCSAN detected a race condition in netpoll:
BUG: KCSAN: data-race in net_rx_action / netpoll_send_skb
write (marked) to 0xffff8881164168b0 of 4 bytes by interrupt on cpu 10:
net_rx_action (./include/linux/netpoll.h:90 net/core/dev.c:6712 net/core/dev.c:6822)
<snip>
read to 0xffff8881164168b0 of 4 bytes by task 1 on cpu 2:
netpoll_send_skb (net/core/netpoll.c:319 net/core/netpoll.c:345 net/core/netpoll.c:393)
netpoll_send_udp (net/core/netpoll.c:?)
<snip>
value changed: 0x0000000a -> 0xffffffff
This happens because netpoll_owner_active() needs to check if the
current CPU is the owner of the lock, touching napi->poll_owner
non atomically. The ->poll_owner field contains the current CPU holding
the lock.
Use an atomic read to check if the poll owner is the current CPU.
In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/sec - Fix memory leak for sec resource release
The AIV is one of the SEC resources. When releasing resources,
it need to release the AIV resources at the same time.
Otherwise, memory leakage occurs.
The aiv resource release is added to the sec resource release
function.
In the Linux kernel, the following vulnerability has been resolved:
io_uring/sqpoll: work around a potential audit memory leak
kmemleak complains that there's a memory leak related to connect
handling:
unreferenced object 0xffff0001093bdf00 (size 128):
comm "iou-sqp-455", pid 457, jiffies 4294894164
hex dump (first 32 bytes):
02 00 fa ea 7f 00 00 01 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 2e481b1a):
[<00000000c0a26af4>] kmemleak_alloc+0x30/0x38
[<000000009c30bb45>] kmalloc_trace+0x228/0x358
[<000000009da9d39f>] __audit_sockaddr+0xd0/0x138
[<0000000089a93e34>] move_addr_to_kernel+0x1a0/0x1f8
[<000000000b4e80e6>] io_connect_prep+0x1ec/0x2d4
[<00000000abfbcd99>] io_submit_sqes+0x588/0x1e48
[<00000000e7c25e07>] io_sq_thread+0x8a4/0x10e4
[<00000000d999b491>] ret_from_fork+0x10/0x20
which can can happen if:
1) The command type does something on the prep side that triggers an
audit call.
2) The thread hasn't done any operations before this that triggered
an audit call inside ->issue(), where we have audit_uring_entry()
and audit_uring_exit().
Work around this by issuing a blanket NOP operation before the SQPOLL
does anything.
In the Linux kernel, the following vulnerability has been resolved:
net: ena: Add validation for completion descriptors consistency
Validate that `first` flag is set only for the first
descriptor in multi-buffer packets.
In case of an invalid descriptor, a reset will occur.
A new reset reason for RX data corruption has been added.
In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_api: fix possible infinite loop in tcf_idr_check_alloc()
syzbot found hanging tasks waiting on rtnl_lock [1]
A reproducer is available in the syzbot bug.
When a request to add multiple actions with the same index is sent, the
second request will block forever on the first request. This holds
rtnl_lock, and causes tasks to hang.
Return -EAGAIN to prevent infinite looping, while keeping documented
behavior.
[1]
INFO: task kworker/1:0:5088 blocked for more than 143 seconds.
Not tainted 6.9.0-rc4-syzkaller-00173-g3cdb45594619 #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/1:0 state:D stack:23744 pid:5088 tgid:5088 ppid:2 flags:0x00004000
Workqueue: events_power_efficient reg_check_chans_work
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5409 [inline]
__schedule+0xf15/0x5d00 kernel/sched/core.c:6746
__schedule_loop kernel/sched/core.c:6823 [inline]
schedule+0xe7/0x350 kernel/sched/core.c:6838
schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:6895
__mutex_lock_common kernel/locking/mutex.c:684 [inline]
__mutex_lock+0x5b8/0x9c0 kernel/locking/mutex.c:752
wiphy_lock include/net/cfg80211.h:5953 [inline]
reg_leave_invalid_chans net/wireless/reg.c:2466 [inline]
reg_check_chans_work+0x10a/0x10e0 net/wireless/reg.c:2481
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Fix suspicious rcu_dereference_protected()
When destroying all sets, we are either in pernet exit phase or
are executing a "destroy all sets command" from userspace. The latter
was taken into account in ip_set_dereference() (nfnetlink mutex is held),
but the former was not. The patch adds the required check to
rcu_dereference_protected() in ip_set_dereference().
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix responder length checking for UD request packets
According to the IBA specification:
If a UD request packet is detected with an invalid length, the request
shall be an invalid request and it shall be silently dropped by
the responder. The responder then waits for a new request packet.
commit 689c5421bfe0 ("RDMA/rxe: Fix incorrect responder length checking")
defers responder length check for UD QPs in function `copy_data`.
But it introduces a regression issue for UD QPs.
When the packet size is too large to fit in the receive buffer.
`copy_data` will return error code -EINVAL. Then `send_data_in`
will return RESPST_ERR_MALFORMED_WQE. UD QP will transfer into
ERROR state.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: k3-udma-glue: Fix of_k3_udma_glue_parse_chn_by_id()
The of_k3_udma_glue_parse_chn_by_id() helper function erroneously
invokes "of_node_put()" on the "udmax_np" device-node passed to it,
without having incremented its reference count at any point. Fix it.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Add check for srq max_sge attribute
max_sge attribute is passed by the user, and is inserted and used
unchecked, so verify that the value doesn't exceed maximum allowed value
before using it.
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: fix UBSAN warning in kv_dpm.c
Adds bounds check for sumo_vid_mapping_entry.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix UBSAN warning in kv_dpm.c
Adds bounds check for sumo_vid_mapping_entry.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: xilinx: xdma: Fix data synchronisation in xdma_channel_isr()
Requests the vchan lock before using xdma->stop_request.
In the Linux kernel, the following vulnerability has been resolved:
net/tcp_ao: Don't leak ao_info on error-path
It seems I introduced it together with TCP_AO_CMDF_AO_REQUIRED, on
version 5 [1] of TCP-AO patches. Quite frustrative that having all these
selftests that I've written, running kmemtest & kcov was always in todo.
[1]: https://lore.kernel.org/netdev/20230215183335.800122-5-dima@arista.com/
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Revert "ACPICA: avoid Info: mapping multiple BARs. Your kernel is fine."
Undo the modifications made in commit d410ee5109a1 ("ACPICA: avoid
"Info: mapping multiple BARs. Your kernel is fine.""). The initial
purpose of this commit was to stop memory mappings for operation
regions from overlapping page boundaries, as it can trigger warnings
if different page attributes are present.
However, it was found that when this situation arises, mapping
continues until the boundary's end, but there is still an attempt to
read/write the entire length of the map, leading to a NULL pointer
deference. For example, if a four-byte mapping request is made but
only one byte is mapped because it hits the current page boundary's
end, a four-byte read/write attempt is still made, resulting in a NULL
pointer deference.
Instead, map the entire length, as the ACPI specification does not
mandate that it must be within the same page boundary. It is
permissible for it to be mapped across different regions.
In the Linux kernel, the following vulnerability has been resolved:
tipc: force a dst refcount before doing decryption
As it says in commit 3bc07321ccc2 ("xfrm: Force a dst refcount before
entering the xfrm type handlers"):
"Crypto requests might return asynchronous. In this case we leave the
rcu protected region, so force a refcount on the skb's destination
entry before we enter the xfrm type input/output handlers."
On TIPC decryption path it has the same problem, and skb_dst_force()
should be called before doing decryption to avoid a possible crash.
Shuang reported this issue when this warning is triggered:
[] WARNING: include/net/dst.h:337 tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Kdump: loaded Tainted: G W --------- - - 4.18.0-496.el8.x86_64+debug
[] Workqueue: crypto cryptd_queue_worker
[] RIP: 0010:tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Call Trace:
[] tipc_sk_mcast_rcv+0x548/0xea0 [tipc]
[] tipc_rcv+0xcf5/0x1060 [tipc]
[] tipc_aead_decrypt_done+0x215/0x2e0 [tipc]
[] cryptd_aead_crypt+0xdb/0x190
[] cryptd_queue_worker+0xed/0x190
[] process_one_work+0x93d/0x17e0
In the Linux kernel, the following vulnerability has been resolved:
drop_monitor: replace spin_lock by raw_spin_lock
trace_drop_common() is called with preemption disabled, and it acquires
a spin_lock. This is problematic for RT kernels because spin_locks are
sleeping locks in this configuration, which causes the following splat:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 449, name: rcuc/47
preempt_count: 1, expected: 0
RCU nest depth: 2, expected: 2
5 locks held by rcuc/47/449:
#0: ff1100086ec30a60 ((softirq_ctrl.lock)){+.+.}-{2:2}, at: __local_bh_disable_ip+0x105/0x210
#1: ffffffffb394a280 (rcu_read_lock){....}-{1:2}, at: rt_spin_lock+0xbf/0x130
#2: ffffffffb394a280 (rcu_read_lock){....}-{1:2}, at: __local_bh_disable_ip+0x11c/0x210
#3: ffffffffb394a160 (rcu_callback){....}-{0:0}, at: rcu_do_batch+0x360/0xc70
#4: ff1100086ee07520 (&data->lock){+.+.}-{2:2}, at: trace_drop_common.constprop.0+0xb5/0x290
irq event stamp: 139909
hardirqs last enabled at (139908): [<ffffffffb1df2b33>] _raw_spin_unlock_irqrestore+0x63/0x80
hardirqs last disabled at (139909): [<ffffffffb19bd03d>] trace_drop_common.constprop.0+0x26d/0x290
softirqs last enabled at (139892): [<ffffffffb07a1083>] __local_bh_enable_ip+0x103/0x170
softirqs last disabled at (139898): [<ffffffffb0909b33>] rcu_cpu_kthread+0x93/0x1f0
Preemption disabled at:
[<ffffffffb1de786b>] rt_mutex_slowunlock+0xab/0x2e0
CPU: 47 PID: 449 Comm: rcuc/47 Not tainted 6.9.0-rc2-rt1+ #7
Hardware name: Dell Inc. PowerEdge R650/0Y2G81, BIOS 1.6.5 04/15/2022
Call Trace:
<TASK>
dump_stack_lvl+0x8c/0xd0
dump_stack+0x14/0x20
__might_resched+0x21e/0x2f0
rt_spin_lock+0x5e/0x130
? trace_drop_common.constprop.0+0xb5/0x290
? skb_queue_purge_reason.part.0+0x1bf/0x230
trace_drop_common.constprop.0+0xb5/0x290
? preempt_count_sub+0x1c/0xd0
? _raw_spin_unlock_irqrestore+0x4a/0x80
? __pfx_trace_drop_common.constprop.0+0x10/0x10
? rt_mutex_slowunlock+0x26a/0x2e0
? skb_queue_purge_reason.part.0+0x1bf/0x230
? __pfx_rt_mutex_slowunlock+0x10/0x10
? skb_queue_purge_reason.part.0+0x1bf/0x230
trace_kfree_skb_hit+0x15/0x20
trace_kfree_skb+0xe9/0x150
kfree_skb_reason+0x7b/0x110
skb_queue_purge_reason.part.0+0x1bf/0x230
? __pfx_skb_queue_purge_reason.part.0+0x10/0x10
? mark_lock.part.0+0x8a/0x520
...
trace_drop_common() also disables interrupts, but this is a minor issue
because we could easily replace it with a local_lock.
Replace the spin_lock with raw_spin_lock to avoid sleeping in atomic
context.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix potential hung tasks during chip recovery
During chip recovery (e.g. chip reset), there is a possible situation that
kernel worker reset_work is holding the lock and waiting for kernel thread
stat_worker to be parked, while stat_worker is waiting for the release of
the same lock.
It causes a deadlock resulting in the dumping of hung tasks messages and
possible rebooting of the device.
This patch prevents the execution of stat_worker during the chip recovery.
In the Linux kernel, the following vulnerability has been resolved:
drm/lima: mask irqs in timeout path before hard reset
There is a race condition in which a rendering job might take just long
enough to trigger the drm sched job timeout handler but also still
complete before the hard reset is done by the timeout handler.
This runs into race conditions not expected by the timeout handler.
In some very specific cases it currently may result in a refcount
imbalance on lima_pm_idle, with a stack dump such as:
[10136.669170] WARNING: CPU: 0 PID: 0 at drivers/gpu/drm/lima/lima_devfreq.c:205 lima_devfreq_record_idle+0xa0/0xb0
...
[10136.669459] pc : lima_devfreq_record_idle+0xa0/0xb0
...
[10136.669628] Call trace:
[10136.669634] lima_devfreq_record_idle+0xa0/0xb0
[10136.669646] lima_sched_pipe_task_done+0x5c/0xb0
[10136.669656] lima_gp_irq_handler+0xa8/0x120
[10136.669666] __handle_irq_event_percpu+0x48/0x160
[10136.669679] handle_irq_event+0x4c/0xc0
We can prevent that race condition entirely by masking the irqs at the
beginning of the timeout handler, at which point we give up on waiting
for that job entirely.
The irqs will be enabled again at the next hard reset which is already
done as a recovery by the timeout handler.
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: x86-android-tablets: Unregister devices in reverse order
Not all subsystems support a device getting removed while there are
still consumers of the device with a reference to the device.
One example of this is the regulator subsystem. If a regulator gets
unregistered while there are still drivers holding a reference
a WARN() at drivers/regulator/core.c:5829 triggers, e.g.:
WARNING: CPU: 1 PID: 1587 at drivers/regulator/core.c:5829 regulator_unregister
Hardware name: Intel Corp. VALLEYVIEW C0 PLATFORM/BYT-T FFD8, BIOS BLADE_21.X64.0005.R00.1504101516 FFD8_X64_R_2015_04_10_1516 04/10/2015
RIP: 0010:regulator_unregister
Call Trace:
<TASK>
regulator_unregister
devres_release_group
i2c_device_remove
device_release_driver_internal
bus_remove_device
device_del
device_unregister
x86_android_tablet_remove
On the Lenovo Yoga Tablet 2 series the bq24190 charger chip also provides
a 5V boost converter output for powering USB devices connected to the micro
USB port, the bq24190-charger driver exports this as a Vbus regulator.
On the 830 (8") and 1050 ("10") models this regulator is controlled by
a platform_device and x86_android_tablet_remove() removes platform_device-s
before i2c_clients so the consumer gets removed first.
But on the 1380 (13") model there is a lc824206xa micro-USB switch
connected over I2C and the extcon driver for that controls the regulator.
The bq24190 i2c-client *must* be registered first, because that creates
the regulator with the lc824206xa listed as its consumer. If the regulator
has not been registered yet the lc824206xa driver will end up getting
a dummy regulator.
Since in this case both the regulator provider and consumer are I2C
devices, the only way to ensure that the consumer is unregistered first
is to unregister the I2C devices in reverse order of in which they were
created.
For consistency and to avoid similar problems in the future change
x86_android_tablet_remove() to unregister all device types in reverse
order.
In the Linux kernel, the following vulnerability has been resolved:
media: mtk-vcodec: potential null pointer deference in SCP
The return value of devm_kzalloc() needs to be checked to avoid
NULL pointer deference. This is similar to CVE-2022-3113.
In the Linux kernel, the following vulnerability has been resolved:
ext4: do not create EA inode under buffer lock
ext4_xattr_set_entry() creates new EA inodes while holding buffer lock
on the external xattr block. This is problematic as it nests all the
allocation locking (which acquires locks on other buffers) under the
buffer lock. This can even deadlock when the filesystem is corrupted and
e.g. quota file is setup to contain xattr block as data block. Move the
allocation of EA inode out of ext4_xattr_set_entry() into the callers.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: remove clear SB_INLINECRYPT flag in default_options
In f2fs_remount, SB_INLINECRYPT flag will be clear and re-set.
If create new file or open file during this gap, these files
will not use inlinecrypt. Worse case, it may lead to data
corruption if wrappedkey_v0 is enable.
Thread A: Thread B:
-f2fs_remount -f2fs_file_open or f2fs_new_inode
-default_options
<- clear SB_INLINECRYPT flag
-fscrypt_select_encryption_impl
-parse_options
<- set SB_INLINECRYPT again
In the Linux kernel, the following vulnerability has been resolved:
Avoid hw_desc array overrun in dw-axi-dmac
I have a use case where nr_buffers = 3 and in which each descriptor is composed by 3
segments, resulting in the DMA channel descs_allocated to be 9. Since axi_desc_put()
handles the hw_desc considering the descs_allocated, this scenario would result in a
kernel panic (hw_desc array will be overrun).
To fix this, the proposal is to add a new member to the axi_dma_desc structure,
where we keep the number of allocated hw_descs (axi_desc_alloc()) and use it in
axi_desc_put() to handle the hw_desc array correctly.
Additionally I propose to remove the axi_chan_start_first_queued() call after completing
the transfer, since it was identified that unbalance can occur (started descriptors can
be interrupted and transfer ignored due to DMA channel not being enabled).
In the Linux kernel, the following vulnerability has been resolved:
MIPS: Octeon: Add PCIe link status check
The standard PCIe configuration read-write interface is used to
access the configuration space of the peripheral PCIe devices
of the mips processor after the PCIe link surprise down, it can
generate kernel panic caused by "Data bus error". So it is
necessary to add PCIe link status check for system protection.
When the PCIe link is down or in training, assigning a value
of 0 to the configuration address can prevent read-write behavior
to the configuration space of peripheral PCIe devices, thereby
preventing kernel panic.
In the Linux kernel, the following vulnerability has been resolved:
serial: imx: Introduce timeout when waiting on transmitter empty
By waiting at most 1 second for USR2_TXDC to be set, we avoid a potential
deadlock.
In case of the timeout, there is not much we can do, so we simply ignore
the transmitter state and optimistically try to continue.
In the Linux kernel, the following vulnerability has been resolved:
tty: add the option to have a tty reject a new ldisc
... and use it to limit the virtual terminals to just N_TTY. They are
kind of special, and in particular, the "con_write()" routine violates
the "writes cannot sleep" rule that some ldiscs rely on.
This avoids the
BUG: sleeping function called from invalid context at kernel/printk/printk.c:2659
when N_GSM has been attached to a virtual console, and gsmld_write()
calls con_write() while holding a spinlock, and con_write() then tries
to get the console lock.
In the Linux kernel, the following vulnerability has been resolved:
mips: bmips: BCM6358: make sure CBR is correctly set
It was discovered that some device have CBR address set to 0 causing
kernel panic when arch_sync_dma_for_cpu_all is called.
This was notice in situation where the system is booted from TP1 and
BMIPS_GET_CBR() returns 0 instead of a valid address and
!!(read_c0_brcm_cmt_local() & (1 << 31)); not failing.
The current check whether RAC flush should be disabled or not are not
enough hence lets check if CBR is a valid address or not.