CVE Database

Search and browse vulnerability records from NVD

Showing 50 of 30474 CVEs

CVE ID Severity Description EPSS Published
N/A

In the Linux kernel, the following vulnerability has been resolved: drm/i915: Fix memory leaks in i915 selftests This patch fixes memory leaks on error escapes in function fake_get_pages (cherry picked from commit 8bfbdadce85c4c51689da10f39c805a7106d4567)

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: scsi: target: iscsi: Fix buffer overflow in lio_target_nacl_info_show() The function lio_target_nacl_info_show() uses sprintf() in a loop to print details for every iSCSI connection in a session without checking for the buffer length. With enough iSCSI connections it's possible to overflow the buffer provided by configfs and corrupt the memory. This patch replaces sprintf() with sysfs_emit_at() that checks for buffer boundries.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: scsi: ses: Fix possible desc_ptr out-of-bounds accesses Sanitize possible desc_ptr out-of-bounds accesses in ses_enclosure_data_process().

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: clk: Fix memory leak in devm_clk_notifier_register() devm_clk_notifier_register() allocates a devres resource for clk notifier but didn't register that to the device, so the notifier didn't get unregistered on device detach and the allocated resource was leaked. Fix the issue by registering the resource through devres_add(). This issue was found with kmemleak on a Chromebook.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: call disconnect callback before deleting conn In hci_cs_disconnect, we do hci_conn_del even if disconnection failed. ISO, L2CAP and SCO connections refer to the hci_conn without hci_conn_get, so disconn_cfm must be called so they can clean up their conn, otherwise use-after-free occurs. ISO: ========================================================== iso_sock_connect:880: sk 00000000eabd6557 iso_connect_cis:356: 70:1a:b8:98:ff:a2 -> 28:3d:c2:4a:7e:da ... iso_conn_add:140: hcon 000000001696f1fd conn 00000000b6251073 hci_dev_put:1487: hci0 orig refcnt 17 __iso_chan_add:214: conn 00000000b6251073 iso_sock_clear_timer:117: sock 00000000eabd6557 state 3 ... hci_rx_work:4085: hci0 Event packet hci_event_packet:7601: hci0: event 0x0f hci_cmd_status_evt:4346: hci0: opcode 0x0406 hci_cs_disconnect:2760: hci0: status 0x0c hci_sent_cmd_data:3107: hci0 opcode 0x0406 hci_conn_del:1151: hci0 hcon 000000001696f1fd handle 2560 hci_conn_unlink:1102: hci0: hcon 000000001696f1fd hci_conn_drop:1451: hcon 00000000d8521aaf orig refcnt 2 hci_chan_list_flush:2780: hcon 000000001696f1fd hci_dev_put:1487: hci0 orig refcnt 21 hci_dev_put:1487: hci0 orig refcnt 20 hci_req_cmd_complete:3978: opcode 0x0406 status 0x0c ... <no iso_* activity on sk/conn> ... iso_sock_sendmsg:1098: sock 00000000dea5e2e0, sk 00000000eabd6557 BUG: kernel NULL pointer dereference, address: 0000000000000668 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014 RIP: 0010:iso_sock_sendmsg (net/bluetooth/iso.c:1112) bluetooth ========================================================== L2CAP: ================================================================== hci_cmd_status_evt:4359: hci0: opcode 0x0406 hci_cs_disconnect:2760: hci0: status 0x0c hci_sent_cmd_data:3085: hci0 opcode 0x0406 hci_conn_del:1151: hci0 hcon ffff88800c999000 handle 3585 hci_conn_unlink:1102: hci0: hcon ffff88800c999000 hci_chan_list_flush:2780: hcon ffff88800c999000 hci_chan_del:2761: hci0 hcon ffff88800c999000 chan ffff888018ddd280 ... BUG: KASAN: slab-use-after-free in hci_send_acl+0x2d/0x540 [bluetooth] Read of size 8 at addr ffff888018ddd298 by task bluetoothd/1175 CPU: 0 PID: 1175 Comm: bluetoothd Tainted: G E 6.4.0-rc4+ #2 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x5b/0x90 print_report+0xcf/0x670 ? __virt_addr_valid+0xf8/0x180 ? hci_send_acl+0x2d/0x540 [bluetooth] kasan_report+0xa8/0xe0 ? hci_send_acl+0x2d/0x540 [bluetooth] hci_send_acl+0x2d/0x540 [bluetooth] ? __pfx___lock_acquire+0x10/0x10 l2cap_chan_send+0x1fd/0x1300 [bluetooth] ? l2cap_sock_sendmsg+0xf2/0x170 [bluetooth] ? __pfx_l2cap_chan_send+0x10/0x10 [bluetooth] ? lock_release+0x1d5/0x3c0 ? mark_held_locks+0x1a/0x90 l2cap_sock_sendmsg+0x100/0x170 [bluetooth] sock_write_iter+0x275/0x280 ? __pfx_sock_write_iter+0x10/0x10 ? __pfx___lock_acquire+0x10/0x10 do_iter_readv_writev+0x176/0x220 ? __pfx_do_iter_readv_writev+0x10/0x10 ? find_held_lock+0x83/0xa0 ? selinux_file_permission+0x13e/0x210 do_iter_write+0xda/0x340 vfs_writev+0x1b4/0x400 ? __pfx_vfs_writev+0x10/0x10 ? __seccomp_filter+0x112/0x750 ? populate_seccomp_data+0x182/0x220 ? __fget_light+0xdf/0x100 ? do_writev+0x19d/0x210 do_writev+0x19d/0x210 ? __pfx_do_writev+0x10/0x10 ? mark_held_locks+0x1a/0x90 do_syscall_64+0x60/0x90 ? lockdep_hardirqs_on_prepare+0x149/0x210 ? do_syscall_64+0x6c/0x90 ? lockdep_hardirqs_on_prepare+0x149/0x210 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x7ff45cb23e64 Code: 15 d1 1f 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 80 3d 9d a7 0d 00 00 74 13 b8 14 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 48 83 ec 28 89 54 24 1c 48 89 RSP: 002b:00007fff21ae09b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000014 RAX: ffffffffffffffda RBX: ---truncated---

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: btrfs: output extra debug info if we failed to find an inline backref [BUG] Syzbot reported several warning triggered inside lookup_inline_extent_backref(). [CAUSE] As usual, the reproducer doesn't reliably trigger locally here, but at least we know the WARN_ON() is triggered when an inline backref can not be found, and it can only be triggered when @insert is true. (I.e. inserting a new inline backref, which means the backref should already exist) [ENHANCEMENT] After the WARN_ON(), dump all the parameters and the extent tree leaf to help debug.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: srcu: Delegate work to the boot cpu if using SRCU_SIZE_SMALL Commit 994f706872e6 ("srcu: Make Tree SRCU able to operate without snp_node array") assumes that cpu 0 is always online. However, there really are situations when some other CPU is the boot CPU, for example, when booting a kdump kernel with the maxcpus=1 boot parameter. On PowerPC, the kdump kernel can hang as follows: ... [ 1.740036] systemd[1]: Hostname set to <xyz.com> [ 243.686240] INFO: task systemd:1 blocked for more than 122 seconds. [ 243.686264] Not tainted 6.1.0-rc1 #1 [ 243.686272] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 243.686281] task:systemd state:D stack:0 pid:1 ppid:0 flags:0x00042000 [ 243.686296] Call Trace: [ 243.686301] [c000000016657640] [c000000016657670] 0xc000000016657670 (unreliable) [ 243.686317] [c000000016657830] [c00000001001dec0] __switch_to+0x130/0x220 [ 243.686333] [c000000016657890] [c000000010f607b8] __schedule+0x1f8/0x580 [ 243.686347] [c000000016657940] [c000000010f60bb4] schedule+0x74/0x140 [ 243.686361] [c0000000166579b0] [c000000010f699b8] schedule_timeout+0x168/0x1c0 [ 243.686374] [c000000016657a80] [c000000010f61de8] __wait_for_common+0x148/0x360 [ 243.686387] [c000000016657b20] [c000000010176bb0] __flush_work.isra.0+0x1c0/0x3d0 [ 243.686401] [c000000016657bb0] [c0000000105f2768] fsnotify_wait_marks_destroyed+0x28/0x40 [ 243.686415] [c000000016657bd0] [c0000000105f21b8] fsnotify_destroy_group+0x68/0x160 [ 243.686428] [c000000016657c40] [c0000000105f6500] inotify_release+0x30/0xa0 [ 243.686440] [c000000016657cb0] [c0000000105751a8] __fput+0xc8/0x350 [ 243.686452] [c000000016657d00] [c00000001017d524] task_work_run+0xe4/0x170 [ 243.686464] [c000000016657d50] [c000000010020e94] do_notify_resume+0x134/0x140 [ 243.686478] [c000000016657d80] [c00000001002eb18] interrupt_exit_user_prepare_main+0x198/0x270 [ 243.686493] [c000000016657de0] [c00000001002ec60] syscall_exit_prepare+0x70/0x180 [ 243.686505] [c000000016657e10] [c00000001000bf7c] system_call_vectored_common+0xfc/0x280 [ 243.686520] --- interrupt: 3000 at 0x7fffa47d5ba4 [ 243.686528] NIP: 00007fffa47d5ba4 LR: 0000000000000000 CTR: 0000000000000000 [ 243.686538] REGS: c000000016657e80 TRAP: 3000 Not tainted (6.1.0-rc1) [ 243.686548] MSR: 800000000000d033 <SF,EE,PR,ME,IR,DR,RI,LE> CR: 42044440 XER: 00000000 [ 243.686572] IRQMASK: 0 [ 243.686572] GPR00: 0000000000000006 00007ffffa606710 00007fffa48e7200 0000000000000000 [ 243.686572] GPR04: 0000000000000002 000000000000000a 0000000000000000 0000000000000001 [ 243.686572] GPR08: 000001000c172dd0 0000000000000000 0000000000000000 0000000000000000 [ 243.686572] GPR12: 0000000000000000 00007fffa4ff4bc0 0000000000000000 0000000000000000 [ 243.686572] GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 [ 243.686572] GPR20: 0000000132dfdc50 000000000000000e 0000000000189375 0000000000000000 [ 243.686572] GPR24: 00007ffffa606ae0 0000000000000005 000001000c185490 000001000c172570 [ 243.686572] GPR28: 000001000c172990 000001000c184850 000001000c172e00 00007fffa4fedd98 [ 243.686683] NIP [00007fffa47d5ba4] 0x7fffa47d5ba4 [ 243.686691] LR [0000000000000000] 0x0 [ 243.686698] --- interrupt: 3000 [ 243.686708] INFO: task kworker/u16:1:24 blocked for more than 122 seconds. [ 243.686717] Not tainted 6.1.0-rc1 #1 [ 243.686724] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 243.686733] task:kworker/u16:1 state:D stack:0 pid:24 ppid:2 flags:0x00000800 [ 243.686747] Workqueue: events_unbound fsnotify_mark_destroy_workfn [ 243.686758] Call Trace: [ 243.686762] [c0000000166736e0] [c00000004fd91000] 0xc00000004fd91000 (unreliable) [ 243.686775] [c0000000166738d0] [c00000001001dec0] __switch_to+0x130/0x220 [ 243.686788] [c000000016673930] [c000000010f607b8] __schedule+0x1f8/0x ---truncated---

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: nvme-core: fix dev_pm_qos memleak Call dev_pm_qos_hide_latency_tolerance() in the error unwind patch to avoid following kmemleak:- blktests (master) # kmemleak-clear; ./check nvme/044; blktests (master) # kmemleak-scan ; kmemleak-show nvme/044 (Test bi-directional authentication) [passed] runtime 2.111s ... 2.124s unreferenced object 0xffff888110c46240 (size 96): comm "nvme", pid 33461, jiffies 4345365353 (age 75.586s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000069ac2cec>] kmalloc_trace+0x25/0x90 [<000000006acc66d5>] dev_pm_qos_update_user_latency_tolerance+0x6f/0x100 [<00000000cc376ea7>] nvme_init_ctrl+0x38e/0x410 [nvme_core] [<000000007df61b4b>] 0xffffffffc05e88b3 [<00000000d152b985>] 0xffffffffc05744cb [<00000000f04a4041>] vfs_write+0xc5/0x3c0 [<00000000f9491baf>] ksys_write+0x5f/0xe0 [<000000001c46513d>] do_syscall_64+0x3b/0x90 [<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc

0.1% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: tcp: fix skb_copy_ubufs() vs BIG TCP David Ahern reported crashes in skb_copy_ubufs() caused by TCP tx zerocopy using hugepages, and skb length bigger than ~68 KB. skb_copy_ubufs() assumed it could copy all payload using up to MAX_SKB_FRAGS order-0 pages. This assumption broke when BIG TCP was able to put up to 512 KB per skb. We did not hit this bug at Google because we use CONFIG_MAX_SKB_FRAGS=45 and limit gso_max_size to 180000. A solution is to use higher order pages if needed. v2: add missing __GFP_COMP, or we leak memory.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Fix deadloop issue on reading trace_pipe Soft lockup occurs when reading file 'trace_pipe': watchdog: BUG: soft lockup - CPU#6 stuck for 22s! [cat:4488] [...] RIP: 0010:ring_buffer_empty_cpu+0xed/0x170 RSP: 0018:ffff88810dd6fc48 EFLAGS: 00000246 RAX: 0000000000000000 RBX: 0000000000000246 RCX: ffffffff93d1aaeb RDX: ffff88810a280040 RSI: 0000000000000008 RDI: ffff88811164b218 RBP: ffff88811164b218 R08: 0000000000000000 R09: ffff88815156600f R10: ffffed102a2acc01 R11: 0000000000000001 R12: 0000000051651901 R13: 0000000000000000 R14: ffff888115e49500 R15: 0000000000000000 [...] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8d853c2000 CR3: 000000010dcd8000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __find_next_entry+0x1a8/0x4b0 ? peek_next_entry+0x250/0x250 ? down_write+0xa5/0x120 ? down_write_killable+0x130/0x130 trace_find_next_entry_inc+0x3b/0x1d0 tracing_read_pipe+0x423/0xae0 ? tracing_splice_read_pipe+0xcb0/0xcb0 vfs_read+0x16b/0x490 ksys_read+0x105/0x210 ? __ia32_sys_pwrite64+0x200/0x200 ? switch_fpu_return+0x108/0x220 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x61/0xc6 Through the vmcore, I found it's because in tracing_read_pipe(), ring_buffer_empty_cpu() found some buffer is not empty but then it cannot read anything due to "rb_num_of_entries() == 0" always true, Then it infinitely loop the procedure due to user buffer not been filled, see following code path: tracing_read_pipe() { ... ... waitagain: tracing_wait_pipe() // 1. find non-empty buffer here trace_find_next_entry_inc() // 2. loop here try to find an entry __find_next_entry() ring_buffer_empty_cpu(); // 3. find non-empty buffer peek_next_entry() // 4. but peek always return NULL ring_buffer_peek() rb_buffer_peek() rb_get_reader_page() // 5. because rb_num_of_entries() == 0 always true here // then return NULL // 6. user buffer not been filled so goto 'waitgain' // and eventually leads to an deadloop in kernel!!! } By some analyzing, I found that when resetting ringbuffer, the 'entries' of its pages are not all cleared (see rb_reset_cpu()). Then when reducing the ringbuffer, and if some reduced pages exist dirty 'entries' data, they will be added into 'cpu_buffer->overrun' (see rb_remove_pages()), which cause wrong 'overrun' count and eventually cause the deadloop issue. To fix it, we need to clear every pages in rb_reset_cpu().

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: net: cdc_ncm: Deal with too low values of dwNtbOutMaxSize Currently in cdc_ncm_check_tx_max(), if dwNtbOutMaxSize is lower than the calculated "min" value, but greater than zero, the logic sets tx_max to dwNtbOutMaxSize. This is then used to allocate a new SKB in cdc_ncm_fill_tx_frame() where all the data is handled. For small values of dwNtbOutMaxSize the memory allocated during alloc_skb(dwNtbOutMaxSize, GFP_ATOMIC) will have the same size, due to how size is aligned at alloc time: size = SKB_DATA_ALIGN(size); size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); Thus we hit the same bug that we tried to squash with commit 2be6d4d16a084 ("net: cdc_ncm: Allow for dwNtbOutMaxSize to be unset or zero") Low values of dwNtbOutMaxSize do not cause an issue presently because at alloc_skb() time more memory (512b) is allocated than required for the SKB headers alone (320b), leaving some space (512b - 320b = 192b) for CDC data (172b). However, if more elements (for example 3 x u64 = [24b]) were added to one of the SKB header structs, say 'struct skb_shared_info', increasing its original size (320b [320b aligned]) to something larger (344b [384b aligned]), then suddenly the CDC data (172b) no longer fits in the spare SKB data area (512b - 384b = 128b). Consequently the SKB bounds checking semantics fails and panics: skbuff: skb_over_panic: text:ffffffff831f755b len:184 put:172 head:ffff88811f1c6c00 data:ffff88811f1c6c00 tail:0xb8 end:0x80 dev:<NULL> ------------[ cut here ]------------ kernel BUG at net/core/skbuff.c:113! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 57 Comm: kworker/0:2 Not tainted 5.15.106-syzkaller-00249-g19c0ed55a470 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/14/2023 Workqueue: mld mld_ifc_work RIP: 0010:skb_panic net/core/skbuff.c:113 [inline] RIP: 0010:skb_over_panic+0x14c/0x150 net/core/skbuff.c:118 [snip] Call Trace: <TASK> skb_put+0x151/0x210 net/core/skbuff.c:2047 skb_put_zero include/linux/skbuff.h:2422 [inline] cdc_ncm_ndp16 drivers/net/usb/cdc_ncm.c:1131 [inline] cdc_ncm_fill_tx_frame+0x11ab/0x3da0 drivers/net/usb/cdc_ncm.c:1308 cdc_ncm_tx_fixup+0xa3/0x100 Deal with too low values of dwNtbOutMaxSize, clamp it in the range [USB_CDC_NCM_NTB_MIN_OUT_SIZE, CDC_NCM_NTB_MAX_SIZE_TX]. We ensure enough data space is allocated to handle CDC data by making sure dwNtbOutMaxSize is not smaller than USB_CDC_NCM_NTB_MIN_OUT_SIZE.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: ASoC: codecs: wcd938x: fix missing mbhc init error handling MBHC initialisation can fail so add the missing error handling to avoid dereferencing an error pointer when later configuring the jack: Unable to handle kernel paging request at virtual address fffffffffffffff8 pc : wcd_mbhc_start+0x28/0x380 [snd_soc_wcd_mbhc] lr : wcd938x_codec_set_jack+0x28/0x48 [snd_soc_wcd938x] Call trace: wcd_mbhc_start+0x28/0x380 [snd_soc_wcd_mbhc] wcd938x_codec_set_jack+0x28/0x48 [snd_soc_wcd938x] snd_soc_component_set_jack+0x28/0x8c [snd_soc_core] qcom_snd_wcd_jack_setup+0x7c/0x19c [snd_soc_qcom_common] sc8280xp_snd_init+0x20/0x2c [snd_soc_sc8280xp] snd_soc_link_init+0x28/0x90 [snd_soc_core] snd_soc_bind_card+0x628/0xbfc [snd_soc_core] snd_soc_register_card+0xec/0x104 [snd_soc_core] devm_snd_soc_register_card+0x4c/0xa4 [snd_soc_core] sc8280xp_platform_probe+0xf0/0x108 [snd_soc_sc8280xp]

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: md: don't dereference mddev after export_rdev() Except for initial reference, mddev->kobject is referenced by rdev->kobject, and if the last rdev is freed, there is no guarantee that mddev is still valid. Hence mddev should not be used anymore after export_rdev(). This problem can be triggered by following test for mdadm at very low rate: New file: mdadm/tests/23rdev-lifetime devname=${dev0##*/} devt=`cat /sys/block/$devname/dev` pid="" runtime=2 clean_up_test() { pill -9 $pid echo clear > /sys/block/md0/md/array_state } trap 'clean_up_test' EXIT add_by_sysfs() { while true; do echo $devt > /sys/block/md0/md/new_dev done } remove_by_sysfs(){ while true; do echo remove > /sys/block/md0/md/dev-${devname}/state done } echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed" add_by_sysfs & pid="$pid $!" remove_by_sysfs & pid="$pid $!" sleep $runtime exit 0 Test cmd: ./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime Test result: general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6bcb: 0000 [#4] PREEMPT SMP CPU: 0 PID: 1292 Comm: test Tainted: G D W 6.5.0-rc2-00121-g01e55c376936 #562 RIP: 0010:md_wakeup_thread+0x9e/0x320 [md_mod] Call Trace: <TASK> mddev_unlock+0x1b6/0x310 [md_mod] rdev_attr_store+0xec/0x190 [md_mod] sysfs_kf_write+0x52/0x70 kernfs_fop_write_iter+0x19a/0x2a0 vfs_write+0x3b5/0x770 ksys_write+0x74/0x150 __x64_sys_write+0x22/0x30 do_syscall_64+0x40/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Fix this problem by don't dereference mddev after export_rdev().

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: OPP: Fix potential null ptr dereference in dev_pm_opp_get_required_pstate() "opp" pointer is dereferenced before the IS_ERR_OR_NULL() check. Fix it by removing the dereference to cache opp_table and dereference it directly where opp_table is used. This fixes the following smatch warning: drivers/opp/core.c:232 dev_pm_opp_get_required_pstate() warn: variable dereferenced before IS_ERR check 'opp' (see line 230)

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: KVM: nSVM: Check instead of asserting on nested TSC scaling support Check for nested TSC scaling support on nested SVM VMRUN instead of asserting that TSC scaling is exposed to L1 if L1's MSR_AMD64_TSC_RATIO has diverged from KVM's default. Userspace can trigger the WARN at will by writing the MSR and then updating guest CPUID to hide the feature (modifying guest CPUID is allowed anytime before KVM_RUN). E.g. hacking KVM's state_test selftest to do vcpu_set_msr(vcpu, MSR_AMD64_TSC_RATIO, 0); vcpu_clear_cpuid_feature(vcpu, X86_FEATURE_TSCRATEMSR); after restoring state in a new VM+vCPU yields an endless supply of: ------------[ cut here ]------------ WARNING: CPU: 164 PID: 62565 at arch/x86/kvm/svm/nested.c:699 nested_vmcb02_prepare_control+0x3d6/0x3f0 [kvm_amd] Call Trace: <TASK> enter_svm_guest_mode+0x114/0x560 [kvm_amd] nested_svm_vmrun+0x260/0x330 [kvm_amd] vmrun_interception+0x29/0x30 [kvm_amd] svm_invoke_exit_handler+0x35/0x100 [kvm_amd] svm_handle_exit+0xe7/0x180 [kvm_amd] kvm_arch_vcpu_ioctl_run+0x1eab/0x2570 [kvm] kvm_vcpu_ioctl+0x4c9/0x5b0 [kvm] __se_sys_ioctl+0x7a/0xc0 __x64_sys_ioctl+0x21/0x30 do_syscall_64+0x41/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x45ca1b Note, the nested #VMEXIT path has the same flaw, but needs a different fix and will be handled separately.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: ext4: fix memory leaks in ext4_fname_{setup_filename,prepare_lookup} If the filename casefolding fails, we'll be leaking memory from the fscrypt_name struct, namely from the 'crypto_buf.name' member. Make sure we free it in the error path on both ext4_fname_setup_filename() and ext4_fname_prepare_lookup() functions.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: bnxt: avoid overflow in bnxt_get_nvram_directory() The value of an arithmetic expression is subject of possible overflow due to a failure to cast operands to a larger data type before performing arithmetic. Used macro for multiplication instead operator for avoiding overflow. Found by Security Code and Linux Verification Center (linuxtesting.org) with SVACE.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: bpf, cpumap: Handle skb as well when clean up ptr_ring The following warning was reported when running xdp_redirect_cpu with both skb-mode and stress-mode enabled: ------------[ cut here ]------------ Incorrect XDP memory type (-2128176192) usage WARNING: CPU: 7 PID: 1442 at net/core/xdp.c:405 Modules linked in: CPU: 7 PID: 1442 Comm: kworker/7:0 Tainted: G 6.5.0-rc2+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Workqueue: events __cpu_map_entry_free RIP: 0010:__xdp_return+0x1e4/0x4a0 ...... Call Trace: <TASK> ? show_regs+0x65/0x70 ? __warn+0xa5/0x240 ? __xdp_return+0x1e4/0x4a0 ...... xdp_return_frame+0x4d/0x150 __cpu_map_entry_free+0xf9/0x230 process_one_work+0x6b0/0xb80 worker_thread+0x96/0x720 kthread+0x1a5/0x1f0 ret_from_fork+0x3a/0x70 ret_from_fork_asm+0x1b/0x30 </TASK> The reason for the warning is twofold. One is due to the kthread cpu_map_kthread_run() is stopped prematurely. Another one is __cpu_map_ring_cleanup() doesn't handle skb mode and treats skbs in ptr_ring as XDP frames. Prematurely-stopped kthread will be fixed by the preceding patch and ptr_ring will be empty when __cpu_map_ring_cleanup() is called. But as the comments in __cpu_map_ring_cleanup() said, handling and freeing skbs in ptr_ring as well to "catch any broken behaviour gracefully".

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: iavf: Fix out-of-bounds when setting channels on remove If we set channels greater during iavf_remove(), and waiting reset done would be timeout, then returned with error but changed num_active_queues directly, that will lead to OOB like the following logs. Because the num_active_queues is greater than tx/rx_rings[] allocated actually. Reproducer: [root@host ~]# cat repro.sh #!/bin/bash pf_dbsf="0000:41:00.0" vf0_dbsf="0000:41:02.0" g_pids=() function do_set_numvf() { echo 2 >/sys/bus/pci/devices/${pf_dbsf}/sriov_numvfs sleep $((RANDOM%3+1)) echo 0 >/sys/bus/pci/devices/${pf_dbsf}/sriov_numvfs sleep $((RANDOM%3+1)) } function do_set_channel() { local nic=$(ls -1 --indicator-style=none /sys/bus/pci/devices/${vf0_dbsf}/net/) [ -z "$nic" ] && { sleep $((RANDOM%3)) ; return 1; } ifconfig $nic 192.168.18.5 netmask 255.255.255.0 ifconfig $nic up ethtool -L $nic combined 1 ethtool -L $nic combined 4 sleep $((RANDOM%3)) } function on_exit() { local pid for pid in "${g_pids[@]}"; do kill -0 "$pid" &>/dev/null && kill "$pid" &>/dev/null done g_pids=() } trap "on_exit; exit" EXIT while :; do do_set_numvf ; done & g_pids+=($!) while :; do do_set_channel ; done & g_pids+=($!) wait Result: [ 3506.152887] iavf 0000:41:02.0: Removing device [ 3510.400799] ================================================================== [ 3510.400820] BUG: KASAN: slab-out-of-bounds in iavf_free_all_tx_resources+0x156/0x160 [iavf] [ 3510.400823] Read of size 8 at addr ffff88b6f9311008 by task repro.sh/55536 [ 3510.400823] [ 3510.400830] CPU: 101 PID: 55536 Comm: repro.sh Kdump: loaded Tainted: G O --------- -t - 4.18.0 #1 [ 3510.400832] Hardware name: Powerleader PR2008AL/H12DSi-N6, BIOS 2.0 04/09/2021 [ 3510.400835] Call Trace: [ 3510.400851] dump_stack+0x71/0xab [ 3510.400860] print_address_description+0x6b/0x290 [ 3510.400865] ? iavf_free_all_tx_resources+0x156/0x160 [iavf] [ 3510.400868] kasan_report+0x14a/0x2b0 [ 3510.400873] iavf_free_all_tx_resources+0x156/0x160 [iavf] [ 3510.400880] iavf_remove+0x2b6/0xc70 [iavf] [ 3510.400884] ? iavf_free_all_rx_resources+0x160/0x160 [iavf] [ 3510.400891] ? wait_woken+0x1d0/0x1d0 [ 3510.400895] ? notifier_call_chain+0xc1/0x130 [ 3510.400903] pci_device_remove+0xa8/0x1f0 [ 3510.400910] device_release_driver_internal+0x1c6/0x460 [ 3510.400916] pci_stop_bus_device+0x101/0x150 [ 3510.400919] pci_stop_and_remove_bus_device+0xe/0x20 [ 3510.400924] pci_iov_remove_virtfn+0x187/0x420 [ 3510.400927] ? pci_iov_add_virtfn+0xe10/0xe10 [ 3510.400929] ? pci_get_subsys+0x90/0x90 [ 3510.400932] sriov_disable+0xed/0x3e0 [ 3510.400936] ? bus_find_device+0x12d/0x1a0 [ 3510.400953] i40e_free_vfs+0x754/0x1210 [i40e] [ 3510.400966] ? i40e_reset_all_vfs+0x880/0x880 [i40e] [ 3510.400968] ? pci_get_device+0x7c/0x90 [ 3510.400970] ? pci_get_subsys+0x90/0x90 [ 3510.400982] ? pci_vfs_assigned.part.7+0x144/0x210 [ 3510.400987] ? __mutex_lock_slowpath+0x10/0x10 [ 3510.400996] i40e_pci_sriov_configure+0x1fa/0x2e0 [i40e] [ 3510.401001] sriov_numvfs_store+0x214/0x290 [ 3510.401005] ? sriov_totalvfs_show+0x30/0x30 [ 3510.401007] ? __mutex_lock_slowpath+0x10/0x10 [ 3510.401011] ? __check_object_size+0x15a/0x350 [ 3510.401018] kernfs_fop_write+0x280/0x3f0 [ 3510.401022] vfs_write+0x145/0x440 [ 3510.401025] ksys_write+0xab/0x160 [ 3510.401028] ? __ia32_sys_read+0xb0/0xb0 [ 3510.401031] ? fput_many+0x1a/0x120 [ 3510.401032] ? filp_close+0xf0/0x130 [ 3510.401038] do_syscall_64+0xa0/0x370 [ 3510.401041] ? page_fault+0x8/0x30 [ 3510.401043] entry_SYSCALL_64_after_hwframe+0x65/0xca [ 3510.401073] RIP: 0033:0x7f3a9bb842c0 [ 3510.401079] Code: 73 01 c3 48 8b 0d d8 cb 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 89 24 2d 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d ---truncated---

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: spi: bcm-qspi: return error if neither hif_mspi nor mspi is available If neither a "hif_mspi" nor "mspi" resource is present, the driver will just early exit in probe but still return success. Apart from not doing anything meaningful, this would then also lead to a null pointer access on removal, as platform_get_drvdata() would return NULL, which it would then try to dereference when trying to unregister the spi master. Fix this by unconditionally calling devm_ioremap_resource(), as it can handle a NULL res and will then return a viable ERR_PTR() if we get one. The "return 0;" was previously a "goto qspi_resource_err;" where then ret was returned, but since ret was still initialized to 0 at this place this was a valid conversion in 63c5395bb7a9 ("spi: bcm-qspi: Fix use-after-free on unbind"). The issue was not introduced by this commit, only made more obvious.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: ice: Don't tx before switchdev is fully configured There is possibility that ice_eswitch_port_start_xmit might be called while some resources are still not allocated which might cause NULL pointer dereference. Fix this by checking if switchdev configuration was finished.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: drivers/perf: hisi: Don't migrate perf to the CPU going to teardown The driver needs to migrate the perf context if the current using CPU going to teardown. By the time calling the cpuhp::teardown() callback the cpu_online_mask() hasn't updated yet and still includes the CPU going to teardown. In current driver's implementation we may migrate the context to the teardown CPU and leads to the below calltrace: ... [ 368.104662][ T932] task:cpuhp/0 state:D stack: 0 pid: 15 ppid: 2 flags:0x00000008 [ 368.113699][ T932] Call trace: [ 368.116834][ T932] __switch_to+0x7c/0xbc [ 368.120924][ T932] __schedule+0x338/0x6f0 [ 368.125098][ T932] schedule+0x50/0xe0 [ 368.128926][ T932] schedule_preempt_disabled+0x18/0x24 [ 368.134229][ T932] __mutex_lock.constprop.0+0x1d4/0x5dc [ 368.139617][ T932] __mutex_lock_slowpath+0x1c/0x30 [ 368.144573][ T932] mutex_lock+0x50/0x60 [ 368.148579][ T932] perf_pmu_migrate_context+0x84/0x2b0 [ 368.153884][ T932] hisi_pcie_pmu_offline_cpu+0x90/0xe0 [hisi_pcie_pmu] [ 368.160579][ T932] cpuhp_invoke_callback+0x2a0/0x650 [ 368.165707][ T932] cpuhp_thread_fun+0xe4/0x190 [ 368.170316][ T932] smpboot_thread_fn+0x15c/0x1a0 [ 368.175099][ T932] kthread+0x108/0x13c [ 368.179012][ T932] ret_from_fork+0x10/0x18 ... Use function cpumask_any_but() to find one correct active cpu to fixes this issue.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel stack overflow as shown below. This issue can be reproduced by enabling CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=", and then giving the following commands at the shell prompt: # cd /sys/kernel/tracing/ # echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events # echo 1 > events/kprobes/enable This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes blacklist using NOKPROBE_SYMBOL(). Insufficient stack space to handle exception! ESR: 0x00000000f2000004 -- BRK (AArch64) FAR: 0x0000ffffccf3e510 Task stack: [0xffff80000ad30000..0xffff80000ad38000] IRQ stack: [0xffff800008050000..0xffff800008058000] Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310] CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19 Hardware name: linux,dummy-virt (DT) pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __rcu_irq_enter_check_tick+0x0/0x1b8 lr : ct_nmi_enter+0x11c/0x138 sp : ffff80000ad30080 x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000 x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000 x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148 x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809 x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000 x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001 x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4 x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000 Kernel panic - not syncing: kernel stack overflow CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0xf8/0x108 show_stack+0x20/0x30 dump_stack_lvl+0x68/0x84 dump_stack+0x1c/0x38 panic+0x214/0x404 add_taint+0x0/0xf8 panic_bad_stack+0x144/0x160 handle_bad_stack+0x38/0x58 __bad_stack+0x78/0x7c __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 [...] el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 el1_interrupt+0x28/0x60 el1h_64_irq_handler+0x18/0x28 el1h_64_irq+0x64/0x68 __ftrace_set_clr_event_nolock+0x98/0x198 __ftrace_set_clr_event+0x58/0x80 system_enable_write+0x144/0x178 vfs_write+0x174/0x738 ksys_write+0xd0/0x188 __arm64_sys_write+0x4c/0x60 invoke_syscall+0x64/0x180 el0_svc_common.constprop.0+0x84/0x160 do_el0_svc+0x48/0xe8 el0_svc+0x34/0xd0 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x190/0x194 SMP: stopping secondary CPUs Kernel Offset: 0x28da86000000 from 0xffff800008000000 PHYS_OFFSET: 0xfffff76600000000 CPU features: 0x00000,01a00100,0000421b Memory Limit: none

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: octeontx2-af: Add validation before accessing cgx and lmac with the addition of new MAC blocks like CN10K RPM and CN10KB RPM_USX, LMACs are noncontiguous and CGX blocks are also noncontiguous. But during RVU driver initialization, the driver is assuming they are contiguous and trying to access cgx or lmac with their id which is resulting in kernel panic. This patch fixes the issue by adding proper checks. [ 23.219150] pc : cgx_lmac_read+0x38/0x70 [ 23.219154] lr : rvu_program_channels+0x3f0/0x498 [ 23.223852] sp : ffff000100d6fc80 [ 23.227158] x29: ffff000100d6fc80 x28: ffff00010009f880 x27: 000000000000005a [ 23.234288] x26: ffff000102586768 x25: 0000000000002500 x24: fffffffffff0f000

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: media: amphion: fix REVERSE_INULL issues reported by coverity null-checking of a pointor is suggested before dereferencing it

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: vdpa: Add features attr to vdpa_nl_policy for nlattr length check The vdpa_nl_policy structure is used to validate the nlattr when parsing the incoming nlmsg. It will ensure the attribute being described produces a valid nlattr pointer in info->attrs before entering into each handler in vdpa_nl_ops. That is to say, the missing part in vdpa_nl_policy may lead to illegal nlattr after parsing, which could lead to OOB read just like CVE-2023-3773. This patch adds the missing nla_policy for vdpa features attr to avoid such bugs.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: Input: exc3000 - properly stop timer on shutdown We need to stop the timer on driver unbind or probe failures, otherwise we get UAF/Oops.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: fbdev: omapfb: lcd_mipid: Fix an error handling path in mipid_spi_probe() If 'mipid_detect()' fails, we must free 'md' to avoid a memory leak.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: perf trace: Really free the evsel->priv area In 3cb4d5e00e037c70 ("perf trace: Free syscall tp fields in evsel->priv") it only was freeing if strcmp(evsel->tp_format->system, "syscalls") returned zero, while the corresponding initialization of evsel->priv was being performed if it was _not_ zero, i.e. if the tp system wasn't 'syscalls'. Just stop looking for that and free it if evsel->priv was set, which should be equivalent. Also use the pre-existing evsel_trace__delete() function. This resolves these leaks, detected with: $ make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin ================================================================= ==481565==ERROR: LeakSanitizer: detected memory leaks Direct leak of 40 byte(s) in 1 object(s) allocated from: #0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097) #1 0x987966 in zalloc (/home/acme/bin/perf+0x987966) #2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307 #3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333 #4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458 #5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480 #6 0x540e8b in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3212 #7 0x540e8b in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891 #8 0x540e8b in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156 #9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323 #10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377 #11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421 #12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537 #13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f) Direct leak of 40 byte(s) in 1 object(s) allocated from: #0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097) #1 0x987966 in zalloc (/home/acme/bin/perf+0x987966) #2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307 #3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333 #4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458 #5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480 #6 0x540dd1 in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3205 #7 0x540dd1 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891 #8 0x540dd1 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156 #9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323 #10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377 #11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421 #12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537 #13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f) SUMMARY: AddressSanitizer: 80 byte(s) leaked in 2 allocation(s). [root@quaco ~]# With this we plug all leaks with "perf trace sleep 1".

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: ALSA: ac97: Fix possible NULL dereference in snd_ac97_mixer smatch error: sound/pci/ac97/ac97_codec.c:2354 snd_ac97_mixer() error: we previously assumed 'rac97' could be null (see line 2072) remove redundant assignment, return error if rac97 is NULL.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: vmbus: Don't dereference ACPI root object handle Since the commit referenced in the Fixes: tag below the VMBus client driver is walking the ACPI namespace up from the VMBus ACPI device to the ACPI namespace root object trying to find Hyper-V MMIO ranges. However, if it is not able to find them it ends trying to walk resources of the ACPI namespace root object itself. This object has all-ones handle, which causes a NULL pointer dereference in the ACPI code (from dereferencing this pointer with an offset). This in turn causes an oops on boot with VMBus host implementations that do not provide Hyper-V MMIO ranges in their VMBus ACPI device or its ancestors. The QEMU VMBus implementation is an example of such implementation. I guess providing these ranges is optional, since all tested Windows versions seem to be able to use VMBus devices without them. Fix this by explicitly terminating the lookup at the ACPI namespace root object. Note that Linux guests under KVM/QEMU do not use the Hyper-V PV interface by default - they only do so if the KVM PV interface is missing or disabled. Example stack trace of such oops: [ 3.710827] ? __die+0x1f/0x60 [ 3.715030] ? page_fault_oops+0x159/0x460 [ 3.716008] ? exc_page_fault+0x73/0x170 [ 3.716959] ? asm_exc_page_fault+0x22/0x30 [ 3.717957] ? acpi_ns_lookup+0x7a/0x4b0 [ 3.718898] ? acpi_ns_internalize_name+0x79/0xc0 [ 3.720018] acpi_ns_get_node_unlocked+0xb5/0xe0 [ 3.721120] ? acpi_ns_check_object_type+0xfe/0x200 [ 3.722285] ? acpi_rs_convert_aml_to_resource+0x37/0x6e0 [ 3.723559] ? down_timeout+0x3a/0x60 [ 3.724455] ? acpi_ns_get_node+0x3a/0x60 [ 3.725412] acpi_ns_get_node+0x3a/0x60 [ 3.726335] acpi_ns_evaluate+0x1c3/0x2c0 [ 3.727295] acpi_ut_evaluate_object+0x64/0x1b0 [ 3.728400] acpi_rs_get_method_data+0x2b/0x70 [ 3.729476] ? vmbus_platform_driver_probe+0x1d0/0x1d0 [hv_vmbus] [ 3.730940] ? vmbus_platform_driver_probe+0x1d0/0x1d0 [hv_vmbus] [ 3.732411] acpi_walk_resources+0x78/0xd0 [ 3.733398] vmbus_platform_driver_probe+0x9f/0x1d0 [hv_vmbus] [ 3.734802] platform_probe+0x3d/0x90 [ 3.735684] really_probe+0x19b/0x400 [ 3.736570] ? __device_attach_driver+0x100/0x100 [ 3.737697] __driver_probe_device+0x78/0x160 [ 3.738746] driver_probe_device+0x1f/0x90 [ 3.739743] __driver_attach+0xc2/0x1b0 [ 3.740671] bus_for_each_dev+0x70/0xc0 [ 3.741601] bus_add_driver+0x10e/0x210 [ 3.742527] driver_register+0x55/0xf0 [ 3.744412] ? 0xffffffffc039a000 [ 3.745207] hv_acpi_init+0x3c/0x1000 [hv_vmbus]

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: drm/i915/perf: add sentinel to xehp_oa_b_counters Arrays passed to reg_in_range_table should end with empty record. The patch solves KASAN detected bug with signature: BUG: KASAN: global-out-of-bounds in xehp_is_valid_b_counter_addr+0x2c7/0x350 [i915] Read of size 4 at addr ffffffffa1555d90 by task perf/1518 CPU: 4 PID: 1518 Comm: perf Tainted: G U 6.4.0-kasan_438-g3303d06107f3+ #1 Hardware name: Intel Corporation Meteor Lake Client Platform/MTL-P DDR5 SODIMM SBS RVP, BIOS MTLPFWI1.R00.3223.D80.2305311348 05/31/2023 Call Trace: <TASK> ... xehp_is_valid_b_counter_addr+0x2c7/0x350 [i915] (cherry picked from commit 2f42c5afb34b5696cf5fe79e744f99be9b218798)

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: bpf: Make bpf_refcount_acquire fallible for non-owning refs This patch fixes an incorrect assumption made in the original bpf_refcount series [0], specifically that the BPF program calling bpf_refcount_acquire on some node can always guarantee that the node is alive. In that series, the patch adding failure behavior to rbtree_add and list_push_{front, back} breaks this assumption for non-owning references. Consider the following program: n = bpf_kptr_xchg(&mapval, NULL); /* skip error checking */ bpf_spin_lock(&l); if(bpf_rbtree_add(&t, &n->rb, less)) { bpf_refcount_acquire(n); /* Failed to add, do something else with the node */ } bpf_spin_unlock(&l); It's incorrect to assume that bpf_refcount_acquire will always succeed in this scenario. bpf_refcount_acquire is being called in a critical section here, but the lock being held is associated with rbtree t, which isn't necessarily the lock associated with the tree that the node is already in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop in it, the program has no ownership of the node's lifetime. Therefore the node's refcount can be decr'd to 0 at any time after the failing rbtree_add. If this happens before the refcount_acquire above, the node might be free'd, and regardless refcount_acquire will be incrementing a 0 refcount. Later patches in the series exercise this scenario, resulting in the expected complaint from the kernel (without this patch's changes): refcount_t: addition on 0; use-after-free. WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110 Modules linked in: bpf_testmod(O) CPU: 1 PID: 207 Comm: test_progs Tainted: G O 6.3.0-rc7-02231-g723de1a718a2-dirty #371 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0xbc/0x110 Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7 RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082 RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000 RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680 RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7 R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388 R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048 FS: 00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> bpf_refcount_acquire_impl+0xb5/0xc0 (rest of output snipped) The patch addresses this by changing bpf_refcount_acquire_impl to use refcount_inc_not_zero instead of refcount_inc and marking bpf_refcount_acquire KF_RET_NULL. For owning references, though, we know the above scenario is not possible and thus that bpf_refcount_acquire will always succeed. Some verifier bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on owning refs despite it being marked KF_RET_NULL. Existing selftests using bpf_refcount_acquire are modified where necessary to NULL-check its return value. [0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: media: radio-shark: Add endpoint checks The syzbot fuzzer was able to provoke a WARNING from the radio-shark2 driver: ------------[ cut here ]------------ usb 1-1: BOGUS urb xfer, pipe 1 != type 3 WARNING: CPU: 0 PID: 3271 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504 Modules linked in: CPU: 0 PID: 3271 Comm: kworker/0:3 Not tainted 6.1.0-rc4-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504 Code: 7c 24 18 e8 00 36 ea fb 48 8b 7c 24 18 e8 36 1c 02 ff 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 a0 b6 90 8a e8 9a 29 b8 03 <0f> 0b e9 58 f8 ff ff e8 d2 35 ea fb 48 81 c5 c0 05 00 00 e9 84 f7 RSP: 0018:ffffc90003876dd0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000 RDX: ffff8880750b0040 RSI: ffffffff816152b8 RDI: fffff5200070edac RBP: ffff8880172d81e0 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000080000000 R11: 0000000000000000 R12: 0000000000000001 R13: ffff8880285c5040 R14: 0000000000000002 R15: ffff888017158200 FS: 0000000000000000(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffe03235b90 CR3: 000000000bc8e000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58 usb_bulk_msg+0x226/0x550 drivers/usb/core/message.c:387 shark_write_reg+0x1ff/0x2e0 drivers/media/radio/radio-shark2.c:88 ... The problem was caused by the fact that the driver does not check whether the endpoints it uses are actually present and have the appropriate types. This can be fixed by adding a simple check of these endpoints (and similarly for the radio-shark driver).

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: nvme-tcp: don't access released socket during error recovery While the error recovery work is temporarily failing reconnect attempts, running the 'nvme list' command causes a kernel NULL pointer dereference by calling getsockname() with a released socket. During error recovery work, the nvme tcp socket is released and a new one created, so it is not safe to access the socket without proper check.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: x86: fix clear_user_rep_good() exception handling annotation This code no longer exists in mainline, because it was removed in commit d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing") upstream. However, rather than backport the full range of x86 memory clearing and copying cleanups, fix the exception table annotation placement for the final 'rep movsb' in clear_user_rep_good(): rather than pointing at the actual instruction that did the user space access, it pointed to the register move just before it. That made sense from a code flow standpoint, but not from an actual usage standpoint: it means that if user access takes an exception, the exception handler won't actually find the instruction in the exception tables. As a result, rather than fixing it up and returning -EFAULT, it would then turn it into a kernel oops report instead, something like: BUG: unable to handle page fault for address: 0000000020081000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page ... RIP: 0010:clear_user_rep_good+0x1c/0x30 arch/x86/lib/clear_page_64.S:147 ... Call Trace: __clear_user arch/x86/include/asm/uaccess_64.h:103 [inline] clear_user arch/x86/include/asm/uaccess_64.h:124 [inline] iov_iter_zero+0x709/0x1290 lib/iov_iter.c:800 iomap_dio_hole_iter fs/iomap/direct-io.c:389 [inline] iomap_dio_iter fs/iomap/direct-io.c:440 [inline] __iomap_dio_rw+0xe3d/0x1cd0 fs/iomap/direct-io.c:601 iomap_dio_rw+0x40/0xa0 fs/iomap/direct-io.c:689 ext4_dio_read_iter fs/ext4/file.c:94 [inline] ext4_file_read_iter+0x4be/0x690 fs/ext4/file.c:145 call_read_iter include/linux/fs.h:2183 [inline] do_iter_readv_writev+0x2e0/0x3b0 fs/read_write.c:733 do_iter_read+0x2f2/0x750 fs/read_write.c:796 vfs_readv+0xe5/0x150 fs/read_write.c:916 do_preadv+0x1b6/0x270 fs/read_write.c:1008 __do_sys_preadv2 fs/read_write.c:1070 [inline] __se_sys_preadv2 fs/read_write.c:1061 [inline] __x64_sys_preadv2+0xef/0x150 fs/read_write.c:1061 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd which then looks like a filesystem bug rather than the incorrect exception annotation that it is. [ The alternative to this one-liner fix is to take the upstream series that cleans this all up: 68674f94ffc9 ("x86: don't use REP_GOOD or ERMS for small memory copies") 20f3337d350c ("x86: don't use REP_GOOD or ERMS for small memory clearing") adfcf4231b8c ("x86: don't use REP_GOOD or ERMS for user memory copies") * d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing") 3639a535587d ("x86: move stac/clac from user copy routines into callers") 577e6a7fd50d ("x86: inline the 'rep movs' in user copies for the FSRM case") 8c9b6a88b7e2 ("x86: improve on the non-rep 'clear_user' function") 427fda2c8a49 ("x86: improve on the non-rep 'copy_user' function") * e046fe5a36a9 ("x86: set FSRS automatically on AMD CPUs that have FSRM") e1f2750edc4a ("x86: remove 'zerorest' argument from __copy_user_nocache()") 034ff37d3407 ("x86: rewrite '__copy_user_nocache' function") with either the whole series or at a minimum the two marked commits being needed to fix this issue ]

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: hif_usb: fix memory leak of remain_skbs hif_dev->remain_skb is allocated and used exclusively in ath9k_hif_usb_rx_stream(). It is implied that an allocated remain_skb is processed and subsequently freed (in error paths) only during the next call of ath9k_hif_usb_rx_stream(). So, if the urbs are deallocated between those two calls due to the device deinitialization or suspend, it is possible that ath9k_hif_usb_rx_stream() is not called next time and the allocated remain_skb is leaked. Our local Syzkaller instance was able to trigger that. remain_skb makes sense when receiving two consecutive urbs which are logically linked together, i.e. a specific data field from the first skb indicates a cached skb to be allocated, memcpy'd with some data and subsequently processed in the next call to ath9k_hif_usb_rx_stream(). Urbs deallocation supposedly makes that link irrelevant so we need to free the cached skb in those cases. Fix the leak by introducing a function to explicitly free remain_skb (if it is not NULL) when the rx urbs have been deallocated. remain_skb is NULL when it has not been allocated at all (hif_dev struct is kzalloced) or when it has been processed in next call to ath9k_hif_usb_rx_stream(). Found by Linux Verification Center (linuxtesting.org) with Syzkaller.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: ASoC: lpass: Fix for KASAN use_after_free out of bounds When we run syzkaller we get below Out of Bounds error. "KASAN: slab-out-of-bounds Read in regcache_flat_read" Below is the backtrace of the issue: BUG: KASAN: slab-out-of-bounds in regcache_flat_read+0x10c/0x110 Read of size 4 at addr ffffff8088fbf714 by task syz-executor.4/14144 CPU: 6 PID: 14144 Comm: syz-executor.4 Tainted: G W Hardware name: Qualcomm Technologies, Inc. sc7280 CRD platform (rev5+) (DT) Call trace: dump_backtrace+0x0/0x4ec show_stack+0x34/0x50 dump_stack_lvl+0xdc/0x11c print_address_description+0x30/0x2d8 kasan_report+0x178/0x1e4 __asan_report_load4_noabort+0x44/0x50 regcache_flat_read+0x10c/0x110 regcache_read+0xf8/0x5a0 _regmap_read+0x45c/0x86c _regmap_update_bits+0x128/0x290 regmap_update_bits_base+0xc0/0x15c snd_soc_component_update_bits+0xa8/0x22c snd_soc_component_write_field+0x68/0xd4 tx_macro_put_dec_enum+0x1d0/0x268 snd_ctl_elem_write+0x288/0x474 By Error checking and checking valid values issue gets rectifies.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: wifi: ath6kl: reduce WARN to dev_dbg() in callback The warn is triggered on a known race condition, documented in the code above the test, that is correctly handled. Using WARN() hinders automated testing. Reducing severity.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: octeon_ep: cancel queued works in probe error path If it fails to get the devices's MAC address, octep_probe exits while leaving the delayed work intr_poll_task queued. When the work later runs, it's a use after free. Move the cancelation of intr_poll_task from octep_remove into octep_device_cleanup. This does not change anything in the octep_remove flow, but octep_device_cleanup is called also in the octep_probe error path, where the cancelation is needed. Note that the cancelation of ctrl_mbox_task has to follow intr_poll_task's, because the ctrl_mbox_task may be queued by intr_poll_task.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: media: i2c: ov772x: Fix memleak in ov772x_probe() A memory leak was reported when testing ov772x with bpf mock device: AssertionError: unreferenced object 0xffff888109afa7a8 (size 8): comm "python3", pid 279, jiffies 4294805921 (age 20.681s) hex dump (first 8 bytes): 80 22 88 15 81 88 ff ff ."...... backtrace: [<000000009990b438>] __kmalloc_node+0x44/0x1b0 [<000000009e32f7d7>] kvmalloc_node+0x34/0x180 [<00000000faf48134>] v4l2_ctrl_handler_init_class+0x11d/0x180 [videodev] [<00000000da376937>] ov772x_probe+0x1c3/0x68c [ov772x] [<000000003f0d225e>] i2c_device_probe+0x28d/0x680 [<00000000e0b6db89>] really_probe+0x17c/0x3f0 [<000000001b19fcee>] __driver_probe_device+0xe3/0x170 [<0000000048370519>] driver_probe_device+0x49/0x120 [<000000005ead07a0>] __device_attach_driver+0xf7/0x150 [<0000000043f452b8>] bus_for_each_drv+0x114/0x180 [<00000000358e5596>] __device_attach+0x1e5/0x2d0 [<0000000043f83c5d>] bus_probe_device+0x126/0x140 [<00000000ee0f3046>] device_add+0x810/0x1130 [<00000000e0278184>] i2c_new_client_device+0x359/0x4f0 [<0000000070baf34f>] of_i2c_register_device+0xf1/0x110 [<00000000a9f2159d>] of_i2c_notify+0x100/0x160 unreferenced object 0xffff888119825c00 (size 256): comm "python3", pid 279, jiffies 4294805921 (age 20.681s) hex dump (first 32 bytes): 00 b4 a5 17 81 88 ff ff 00 5e 82 19 81 88 ff ff .........^...... 10 5c 82 19 81 88 ff ff 10 5c 82 19 81 88 ff ff .\.......\...... backtrace: [<000000009990b438>] __kmalloc_node+0x44/0x1b0 [<000000009e32f7d7>] kvmalloc_node+0x34/0x180 [<0000000073d88e0b>] v4l2_ctrl_new.cold+0x19b/0x86f [videodev] [<00000000b1f576fb>] v4l2_ctrl_new_std+0x16f/0x210 [videodev] [<00000000caf7ac99>] ov772x_probe+0x1fa/0x68c [ov772x] [<000000003f0d225e>] i2c_device_probe+0x28d/0x680 [<00000000e0b6db89>] really_probe+0x17c/0x3f0 [<000000001b19fcee>] __driver_probe_device+0xe3/0x170 [<0000000048370519>] driver_probe_device+0x49/0x120 [<000000005ead07a0>] __device_attach_driver+0xf7/0x150 [<0000000043f452b8>] bus_for_each_drv+0x114/0x180 [<00000000358e5596>] __device_attach+0x1e5/0x2d0 [<0000000043f83c5d>] bus_probe_device+0x126/0x140 [<00000000ee0f3046>] device_add+0x810/0x1130 [<00000000e0278184>] i2c_new_client_device+0x359/0x4f0 [<0000000070baf34f>] of_i2c_register_device+0xf1/0x110 The reason is that if priv->hdl.error is set, ov772x_probe() jumps to the error_mutex_destroy without doing v4l2_ctrl_handler_free(), and all resources allocated in v4l2_ctrl_handler_init() and v4l2_ctrl_new_std() are leaked.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: clk: microchip: fix potential UAF in auxdev release callback Similar to commit 1c11289b34ab ("peci: cpu: Fix use-after-free in adev_release()"), the auxiliary device is not torn down in the correct order. If auxiliary_device_add() fails, the release callback will be called twice, resulting in a UAF. Due to timing, the auxdev code in this driver "took inspiration" from the aforementioned commit, and thus its bugs too! Moving auxiliary_device_uninit() to the unregister callback instead avoids the issue.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: netfilter: conntrack: fix wrong ct->timeout value (struct nf_conn)->timeout is an interval before the conntrack confirmed. After confirmed, it becomes a timestamp. It is observed that timeout of an unconfirmed conntrack: - Set by calling ctnetlink_change_timeout(). As a result, `nfct_time_stamp` was wrongly added to `ct->timeout` twice. - Get by calling ctnetlink_dump_timeout(). As a result, `nfct_time_stamp` was wrongly subtracted. Call Trace: <TASK> dump_stack_lvl ctnetlink_dump_timeout __ctnetlink_glue_build ctnetlink_glue_build __nfqnl_enqueue_packet nf_queue nf_hook_slow ip_mc_output ? __pfx_ip_finish_output ip_send_skb ? __pfx_dst_output udp_send_skb udp_sendmsg ? __pfx_ip_generic_getfrag sock_sendmsg Separate the 2 cases in: - Setting `ct->timeout` in __nf_ct_set_timeout(). - Getting `ct->timeout` in ctnetlink_dump_timeout(). Pablo appends: Update ctnetlink to set up the timeout _after_ the IPS_CONFIRMED flag is set on, otherwise conntrack creation via ctnetlink breaks. Note that the problem described in this patch occurs since the introduction of the nfnetlink_queue conntrack support, select a sufficiently old Fixes: tag for -stable kernel to pick up this fix.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fixed a BTI error on returning to patched function When BPF_TRAMP_F_CALL_ORIG is set, BPF trampoline uses BLR to jump back to the instruction next to call site to call the patched function. For BTI-enabled kernel, the instruction next to call site is usually PACIASP, in this case, it's safe to jump back with BLR. But when the call site is not followed by a PACIASP or bti, a BTI exception is triggered. Here is a fault log: Unhandled 64-bit el1h sync exception on CPU0, ESR 0x0000000034000002 -- BTI CPU: 0 PID: 263 Comm: test_progs Tainted: GF Hardware name: linux,dummy-virt (DT) pstate: 40400805 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=-c) pc : bpf_fentry_test1+0xc/0x30 lr : bpf_trampoline_6442573892_0+0x48/0x1000 sp : ffff80000c0c3a50 x29: ffff80000c0c3a90 x28: ffff0000c2e6c080 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000050 x23: 0000000000000000 x22: 0000ffffcfd2a7f0 x21: 000000000000000a x20: 0000ffffcfd2a7f0 x19: 0000000000000000 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffcfd2a7f0 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000000 x10: ffff80000914f5e4 x9 : ffff8000082a1528 x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0101010101010101 x5 : 0000000000000000 x4 : 00000000fffffff2 x3 : 0000000000000001 x2 : ffff8001f4b82000 x1 : 0000000000000000 x0 : 0000000000000001 Kernel panic - not syncing: Unhandled exception CPU: 0 PID: 263 Comm: test_progs Tainted: GF Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0xec/0x144 show_stack+0x24/0x7c dump_stack_lvl+0x8c/0xb8 dump_stack+0x18/0x34 panic+0x1cc/0x3ec __el0_error_handler_common+0x0/0x130 el1h_64_sync_handler+0x60/0xd0 el1h_64_sync+0x78/0x7c bpf_fentry_test1+0xc/0x30 bpf_fentry_test1+0xc/0x30 bpf_prog_test_run_tracing+0xdc/0x2a0 __sys_bpf+0x438/0x22a0 __arm64_sys_bpf+0x30/0x54 invoke_syscall+0x78/0x110 el0_svc_common.constprop.0+0x6c/0x1d0 do_el0_svc+0x38/0xe0 el0_svc+0x30/0xd0 el0t_64_sync_handler+0x1ac/0x1b0 el0t_64_sync+0x1a0/0x1a4 Kernel Offset: disabled CPU features: 0x0000,00034c24,f994fdab Memory Limit: none And the instruction next to call site of bpf_fentry_test1 is ADD, not PACIASP: <bpf_fentry_test1>: bti c nop nop add w0, w0, #0x1 paciasp For BPF prog, JIT always puts a PACIASP after call site for BTI-enabled kernel, so there is no problem. To fix it, replace BLR with RET to bypass the branch target check.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: accel/qaic: Fix a leak in map_user_pages() If get_user_pages_fast() allocates some pages but not as many as we wanted, then the current code leaks those pages. Call put_page() on the pages before returning.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Take RTNL lock when needed before calling xdp_set_features() Hold RTNL lock when calling xdp_set_features() with a registered netdev, as the call triggers the netdev notifiers. This could happen when switching from uplink rep to nic profile for example. This resolves the following call trace: RTNL: assertion failed at net/core/dev.c (1953) WARNING: CPU: 6 PID: 112670 at net/core/dev.c:1953 call_netdevice_notifiers_info+0x7c/0x80 Modules linked in: sch_mqprio sch_mqprio_lib act_tunnel_key act_mirred act_skbedit cls_matchall nfnetlink_cttimeout act_gact cls_flower sch_ingress bonding ib_umad ip_gre rdma_ucm mlx5_vfio_pci ipip tunnel4 ip6_gre gre mlx5_ib vfio_pci vfio_pci_core vfio_iommu_type1 ib_uverbs vfio mlx5_core ib_ipoib geneve nf_tables ip6_tunnel tunnel6 iptable_raw openvswitch nsh rpcrdma ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm ib_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay zram zsmalloc fuse [last unloaded: ib_uverbs] CPU: 6 PID: 112670 Comm: devlink Not tainted 6.4.0-rc7_for_upstream_min_debug_2023_06_28_17_02 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:call_netdevice_notifiers_info+0x7c/0x80 Code: 90 ff 80 3d 2d 6b f7 00 00 75 c5 ba a1 07 00 00 48 c7 c6 e4 ce 0b 82 48 c7 c7 c8 f4 04 82 c6 05 11 6b f7 00 01 e8 a4 7c 8e ff <0f> 0b eb a2 0f 1f 44 00 00 55 48 89 e5 41 54 48 83 e4 f0 48 83 ec RSP: 0018:ffff8882a21c3948 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffff82e6f880 RCX: 0000000000000027 RDX: ffff88885f99b5c8 RSI: 0000000000000001 RDI: ffff88885f99b5c0 RBP: 0000000000000028 R08: ffff88887ffabaa8 R09: 0000000000000003 R10: ffff88887fecbac0 R11: ffff88887ff7bac0 R12: ffff8882a21c3968 R13: ffff88811c018940 R14: 0000000000000000 R15: ffff8881274401a0 FS: 00007fe141c81800(0000) GS:ffff88885f980000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f787c28b948 CR3: 000000014bcf3005 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __warn+0x79/0x120 ? call_netdevice_notifiers_info+0x7c/0x80 ? report_bug+0x17c/0x190 ? handle_bug+0x3c/0x60 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? call_netdevice_notifiers_info+0x7c/0x80 ? call_netdevice_notifiers_info+0x7c/0x80 call_netdevice_notifiers+0x2e/0x50 mlx5e_set_xdp_feature+0x21/0x50 [mlx5_core] mlx5e_nic_init+0xf1/0x1a0 [mlx5_core] mlx5e_netdev_init_profile+0x76/0x110 [mlx5_core] mlx5e_netdev_attach_profile+0x1f/0x90 [mlx5_core] mlx5e_netdev_change_profile+0x92/0x160 [mlx5_core] mlx5e_netdev_attach_nic_profile+0x1b/0x30 [mlx5_core] mlx5e_vport_rep_unload+0xaa/0xc0 [mlx5_core] __esw_offloads_unload_rep+0x52/0x60 [mlx5_core] mlx5_esw_offloads_rep_unload+0x52/0x70 [mlx5_core] esw_offloads_unload_rep+0x34/0x70 [mlx5_core] esw_offloads_disable+0x2b/0x90 [mlx5_core] mlx5_eswitch_disable_locked+0x1b9/0x210 [mlx5_core] mlx5_devlink_eswitch_mode_set+0xf5/0x630 [mlx5_core] ? devlink_get_from_attrs_lock+0x9e/0x110 devlink_nl_cmd_eswitch_set_doit+0x60/0xe0 genl_family_rcv_msg_doit.isra.0+0xc2/0x110 genl_rcv_msg+0x17d/0x2b0 ? devlink_get_from_attrs_lock+0x110/0x110 ? devlink_nl_cmd_eswitch_get_doit+0x290/0x290 ? devlink_pernet_pre_exit+0xf0/0xf0 ? genl_family_rcv_msg_doit.isra.0+0x110/0x110 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x1f6/0x2c0 netlink_sendmsg+0x232/0x4a0 sock_sendmsg+0x38/0x60 ? _copy_from_user+0x2a/0x60 __sys_sendto+0x110/0x160 ? __count_memcg_events+0x48/0x90 ? handle_mm_fault+0x161/0x260 ? do_user_addr_fault+0x278/0x6e0 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033 ---truncated---

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: platform/x86: dell-sysman: Fix reference leak If a duplicate attribute is found using kset_find_obj(), a reference to that attribute is returned. This means that we need to dispose it accordingly. Use kobject_put() to dispose the duplicate attribute in such a case. Compile-tested only.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: iommufd: Fix unpinning of pages when an access is present syzkaller found that the calculation of batch_last_index should use 'start_index' since at input to this function the batch is either empty or it has already been adjusted to cross any accesses so it will start at the point we are unmapping from. Getting this wrong causes the unmap to run over the end of the pages which corrupts pages that were never mapped. In most cases this triggers the num pinned debugging: WARNING: CPU: 0 PID: 557 at drivers/iommu/iommufd/pages.c:294 __iopt_area_unfill_domain+0x152/0x560 Modules linked in: CPU: 0 PID: 557 Comm: repro Not tainted 6.3.0-rc2-eeac8ede1755 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__iopt_area_unfill_domain+0x152/0x560 Code: d2 0f ff 44 8b 64 24 54 48 8b 44 24 48 31 ff 44 89 e6 48 89 44 24 38 e8 fc d3 0f ff 45 85 e4 0f 85 eb 01 00 00 e8 0e d2 0f ff <0f> 0b e8 07 d2 0f ff 48 8b 44 24 38 89 5c 24 58 89 18 8b 44 24 54 RSP: 0018:ffffc9000108baf0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 00000000ffffffff RCX: ffffffff821e3f85 RDX: 0000000000000000 RSI: ffff88800faf0000 RDI: 0000000000000002 RBP: ffffc9000108bd18 R08: 000000000003ca25 R09: 0000000000000014 R10: 000000000003ca00 R11: 0000000000000024 R12: 0000000000000004 R13: 0000000000000801 R14: 00000000000007ff R15: 0000000000000800 FS: 00007f3499ce1740(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000243 CR3: 00000000179c2001 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> iopt_area_unfill_domain+0x32/0x40 iopt_table_remove_domain+0x23f/0x4c0 iommufd_device_selftest_detach+0x3a/0x90 iommufd_selftest_destroy+0x55/0x70 iommufd_object_destroy_user+0xce/0x130 iommufd_destroy+0xa2/0xc0 iommufd_fops_ioctl+0x206/0x330 __x64_sys_ioctl+0x10e/0x160 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc Also add some useful WARN_ON sanity checks.

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: fs: dlm: fix use after free in midcomms commit While working on processing dlm message in softirq context I experienced the following KASAN use-after-free warning: [ 151.760477] ================================================================== [ 151.761803] BUG: KASAN: use-after-free in dlm_midcomms_commit_mhandle+0x19d/0x4b0 [ 151.763414] Read of size 4 at addr ffff88811a980c60 by task lock_torture/1347 [ 151.765284] CPU: 7 PID: 1347 Comm: lock_torture Not tainted 6.1.0-rc4+ #2828 [ 151.766778] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+16134+e5908aa2 04/01/2014 [ 151.768726] Call Trace: [ 151.769277] <TASK> [ 151.769748] dump_stack_lvl+0x5b/0x86 [ 151.770556] print_report+0x180/0x4c8 [ 151.771378] ? kasan_complete_mode_report_info+0x7c/0x1e0 [ 151.772241] ? dlm_midcomms_commit_mhandle+0x19d/0x4b0 [ 151.773069] kasan_report+0x93/0x1a0 [ 151.773668] ? dlm_midcomms_commit_mhandle+0x19d/0x4b0 [ 151.774514] __asan_load4+0x7e/0xa0 [ 151.775089] dlm_midcomms_commit_mhandle+0x19d/0x4b0 [ 151.775890] ? create_message.isra.29.constprop.64+0x57/0xc0 [ 151.776770] send_common+0x19f/0x1b0 [ 151.777342] ? remove_from_waiters+0x60/0x60 [ 151.778017] ? lock_downgrade+0x410/0x410 [ 151.778648] ? __this_cpu_preempt_check+0x13/0x20 [ 151.779421] ? rcu_lockdep_current_cpu_online+0x88/0xc0 [ 151.780292] _convert_lock+0x46/0x150 [ 151.780893] convert_lock+0x7b/0xc0 [ 151.781459] dlm_lock+0x3ac/0x580 [ 151.781993] ? 0xffffffffc0540000 [ 151.782522] ? torture_stop+0x120/0x120 [dlm_locktorture] [ 151.783379] ? dlm_scan_rsbs+0xa70/0xa70 [ 151.784003] ? preempt_count_sub+0xd6/0x130 [ 151.784661] ? is_module_address+0x47/0x70 [ 151.785309] ? torture_stop+0x120/0x120 [dlm_locktorture] [ 151.786166] ? 0xffffffffc0540000 [ 151.786693] ? lockdep_init_map_type+0xc3/0x360 [ 151.787414] ? 0xffffffffc0540000 [ 151.787947] torture_dlm_lock_sync.isra.3+0xe9/0x150 [dlm_locktorture] [ 151.789004] ? torture_stop+0x120/0x120 [dlm_locktorture] [ 151.789858] ? 0xffffffffc0540000 [ 151.790392] ? lock_torture_cleanup+0x20/0x20 [dlm_locktorture] [ 151.791347] ? delay_tsc+0x94/0xc0 [ 151.791898] torture_ex_iter+0xc3/0xea [dlm_locktorture] [ 151.792735] ? torture_start+0x30/0x30 [dlm_locktorture] [ 151.793606] lock_torture+0x177/0x270 [dlm_locktorture] [ 151.794448] ? torture_dlm_lock_sync.isra.3+0x150/0x150 [dlm_locktorture] [ 151.795539] ? lock_torture_stats+0x80/0x80 [dlm_locktorture] [ 151.796476] ? do_raw_spin_lock+0x11e/0x1e0 [ 151.797152] ? mark_held_locks+0x34/0xb0 [ 151.797784] ? _raw_spin_unlock_irqrestore+0x30/0x70 [ 151.798581] ? __kthread_parkme+0x79/0x110 [ 151.799246] ? trace_preempt_on+0x2a/0xf0 [ 151.799902] ? __kthread_parkme+0x79/0x110 [ 151.800579] ? preempt_count_sub+0xd6/0x130 [ 151.801271] ? __kasan_check_read+0x11/0x20 [ 151.801963] ? __kthread_parkme+0xec/0x110 [ 151.802630] ? lock_torture_stats+0x80/0x80 [dlm_locktorture] [ 151.803569] kthread+0x192/0x1d0 [ 151.804104] ? kthread_complete_and_exit+0x30/0x30 [ 151.804881] ret_from_fork+0x1f/0x30 [ 151.805480] </TASK> [ 151.806111] Allocated by task 1347: [ 151.806681] kasan_save_stack+0x26/0x50 [ 151.807308] kasan_set_track+0x25/0x30 [ 151.807920] kasan_save_alloc_info+0x1e/0x30 [ 151.808609] __kasan_slab_alloc+0x63/0x80 [ 151.809263] kmem_cache_alloc+0x1ad/0x830 [ 151.809916] dlm_allocate_mhandle+0x17/0x20 [ 151.810590] dlm_midcomms_get_mhandle+0x96/0x260 [ 151.811344] _create_message+0x95/0x180 [ 151.811994] create_message.isra.29.constprop.64+0x57/0xc0 [ 151.812880] send_common+0x129/0x1b0 [ 151.813467] _convert_lock+0x46/0x150 [ 151.814074] convert_lock+0x7b/0xc0 [ 151.814648] dlm_lock+0x3ac/0x580 [ 151.815199] torture_dlm_lock_sync.isra.3+0xe9/0x150 [dlm_locktorture] [ 151.816258] torture_ex_iter+0xc3/0xea [dlm_locktorture] [ 151.817129] lock_t ---truncated---

0.0% 2025-10-07
N/A

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: drop gfx_v11_0_cp_ecc_error_irq_funcs The gfx.cp_ecc_error_irq is retired in gfx11. In gfx_v11_0_hw_fini still use amdgpu_irq_put to disable this interrupt, which caused the call trace in this function. [ 102.873958] Call Trace: [ 102.873959] <TASK> [ 102.873961] gfx_v11_0_hw_fini+0x23/0x1e0 [amdgpu] [ 102.874019] gfx_v11_0_suspend+0xe/0x20 [amdgpu] [ 102.874072] amdgpu_device_ip_suspend_phase2+0x240/0x460 [amdgpu] [ 102.874122] amdgpu_device_ip_suspend+0x3d/0x80 [amdgpu] [ 102.874172] amdgpu_device_pre_asic_reset+0xd9/0x490 [amdgpu] [ 102.874223] amdgpu_device_gpu_recover.cold+0x548/0xce6 [amdgpu] [ 102.874321] amdgpu_debugfs_reset_work+0x4c/0x70 [amdgpu] [ 102.874375] process_one_work+0x21f/0x3f0 [ 102.874377] worker_thread+0x200/0x3e0 [ 102.874378] ? process_one_work+0x3f0/0x3f0 [ 102.874379] kthread+0xfd/0x130 [ 102.874380] ? kthread_complete_and_exit+0x20/0x20 [ 102.874381] ret_from_fork+0x22/0x30 v2: - Handle umc and gfx ras cases in separated patch - Retired the gfx_v11_0_cp_ecc_error_irq_funcs in gfx11 v3: - Improve the subject and code comments - Add judgment on gfx11 in the function of amdgpu_gfx_ras_late_init v4: - Drop the define of CP_ME1_PIPE_INST_ADDR_INTERVAL and SET_ECC_ME_PIPE_STATE which using in gfx_v11_0_set_cp_ecc_error_state - Check cp_ecc_error_irq.funcs rather than ip version for a more sustainable life v5: - Simplify judgment conditions

0.0% 2025-10-07