In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_fq: fix integer overflow of "credit"
if sch_fq is configured with "initial quantum" having values greater than
INT_MAX, the first assignment of "credit" does signed integer overflow to
a very negative value.
In this situation, the syzkaller script provided by Cristoph triggers the
CPU soft-lockup warning even with few sockets. It's not an infinite loop,
but "credit" wasn't probably meant to be minus 2Gb for each new flow.
Capping "initial quantum" to INT_MAX proved to fix the issue.
v2: validation of "initial quantum" is done in fq_policy, instead of open
coding in fq_change() _ suggested by Jakub Kicinski
In the Linux kernel, the following vulnerability has been resolved:
mm/swap: fix swap_info_struct race between swapoff and get_swap_pages()
The si->lock must be held when deleting the si from the available list.
Otherwise, another thread can re-add the si to the available list, which
can lead to memory corruption. The only place we have found where this
happens is in the swapoff path. This case can be described as below:
core 0 core 1
swapoff
del_from_avail_list(si) waiting
try lock si->lock acquire swap_avail_lock
and re-add si into
swap_avail_head
acquire si->lock but missing si already being added again, and continuing
to clear SWP_WRITEOK, etc.
It can be easily found that a massive warning messages can be triggered
inside get_swap_pages() by some special cases, for example, we call
madvise(MADV_PAGEOUT) on blocks of touched memory concurrently, meanwhile,
run much swapon-swapoff operations (e.g. stress-ng-swap).
However, in the worst case, panic can be caused by the above scene. In
swapoff(), the memory used by si could be kept in swap_info[] after
turning off a swap. This means memory corruption will not be caused
immediately until allocated and reset for a new swap in the swapon path.
A panic message caused: (with CONFIG_PLIST_DEBUG enabled)
------------[ cut here ]------------
top: 00000000e58a3003, n: 0000000013e75cda, p: 000000008cd4451a
prev: 0000000035b1e58a, n: 000000008cd4451a, p: 000000002150ee8d
next: 000000008cd4451a, n: 000000008cd4451a, p: 000000008cd4451a
WARNING: CPU: 21 PID: 1843 at lib/plist.c:60 plist_check_prev_next_node+0x50/0x70
Modules linked in: rfkill(E) crct10dif_ce(E)...
CPU: 21 PID: 1843 Comm: stress-ng Kdump: ... 5.10.134+
Hardware name: Alibaba Cloud ECS, BIOS 0.0.0 02/06/2015
pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--)
pc : plist_check_prev_next_node+0x50/0x70
lr : plist_check_prev_next_node+0x50/0x70
sp : ffff0018009d3c30
x29: ffff0018009d3c40 x28: ffff800011b32a98
x27: 0000000000000000 x26: ffff001803908000
x25: ffff8000128ea088 x24: ffff800011b32a48
x23: 0000000000000028 x22: ffff001800875c00
x21: ffff800010f9e520 x20: ffff001800875c00
x19: ffff001800fdc6e0 x18: 0000000000000030
x17: 0000000000000000 x16: 0000000000000000
x15: 0736076307640766 x14: 0730073007380731
x13: 0736076307640766 x12: 0730073007380731
x11: 000000000004058d x10: 0000000085a85b76
x9 : ffff8000101436e4 x8 : ffff800011c8ce08
x7 : 0000000000000000 x6 : 0000000000000001
x5 : ffff0017df9ed338 x4 : 0000000000000001
x3 : ffff8017ce62a000 x2 : ffff0017df9ed340
x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
plist_check_prev_next_node+0x50/0x70
plist_check_head+0x80/0xf0
plist_add+0x28/0x140
add_to_avail_list+0x9c/0xf0
_enable_swap_info+0x78/0xb4
__do_sys_swapon+0x918/0xa10
__arm64_sys_swapon+0x20/0x30
el0_svc_common+0x8c/0x220
do_el0_svc+0x2c/0x90
el0_svc+0x1c/0x30
el0_sync_handler+0xa8/0xb0
el0_sync+0x148/0x180
irq event stamp: 2082270
Now, si->lock locked before calling 'del_from_avail_list()' to make sure
other thread see the si had been deleted and SWP_WRITEOK cleared together,
will not reinsert again.
This problem exists in versions after stable 5.10.y.
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix possible data races in gfs2_show_options()
Some fields such as gt_logd_secs of the struct gfs2_tune are accessed
without holding the lock gt_spin in gfs2_show_options():
val = sdp->sd_tune.gt_logd_secs;
if (val != 30)
seq_printf(s, ",commit=%d", val);
And thus can cause data races when gfs2_show_options() and other functions
such as gfs2_reconfigure() are concurrently executed:
spin_lock(>->gt_spin);
gt->gt_logd_secs = newargs->ar_commit;
To fix these possible data races, the lock sdp->sd_tune.gt_spin is
acquired before accessing the fields of gfs2_tune and released after these
accesses.
Further changes by Andreas:
- Don't hold the spin lock over the seq_printf operations.
In the Linux kernel, the following vulnerability has been resolved:
md: fix soft lockup in status_resync
status_resync() will calculate 'curr_resync - recovery_active' to show
user a progress bar like following:
[============>........] resync = 61.4%
'curr_resync' and 'recovery_active' is updated in md_do_sync(), and
status_resync() can read them concurrently, hence it's possible that
'curr_resync - recovery_active' can overflow to a huge number. In this
case status_resync() will be stuck in the loop to print a large amount
of '=', which will end up soft lockup.
Fix the problem by setting 'resync' to MD_RESYNC_ACTIVE in this case,
this way resync in progress will be reported to user.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: Avoid nf_ct_helper_hash uses after free
If nf_conntrack_init_start() fails (for example due to a
register_nf_conntrack_bpf() failure), the nf_conntrack_helper_fini()
clean-up path frees the nf_ct_helper_hash map.
When built with NF_CONNTRACK=y, further netfilter modules (e.g:
netfilter_conntrack_ftp) can still be loaded and call
nf_conntrack_helpers_register(), independently of whether nf_conntrack
initialized correctly. This accesses the nf_ct_helper_hash dangling
pointer and causes a uaf, possibly leading to random memory corruption.
This patch guards nf_conntrack_helper_register() from accessing a freed
or uninitialized nf_ct_helper_hash pointer and fixes possible
uses-after-free when loading a conntrack module.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: reject invalid reloc tree root keys with stack dump
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
That ASSERT() makes sure the reloc tree is properly pointed back by its
subvolume tree.
[CAUSE]
After more debugging output, it turns out we had an invalid reloc tree:
BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17
Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM,
QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree.
But reloc trees can only exist for subvolumes, as for non-subvolume
trees, we just COW the involved tree block, no need to create a reloc
tree since those tree blocks won't be shared with other trees.
Only subvolumes tree can share tree blocks with other trees (thus they
have BTRFS_ROOT_SHAREABLE flag).
Thus this new debug output proves my previous assumption that corrupted
on-disk data can trigger that ASSERT().
[FIX]
Besides the dedicated fix and the graceful exit, also let tree-checker to
check such root keys, to make sure reloc trees can only exist for subvolumes.
In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: socinfo: Add kfree for kstrdup
Add kfree() in the later error handling in order to avoid memory leak.
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix a null-ptr-deref in tipc_topsrv_accept
syzbot found a crash in tipc_topsrv_accept:
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
Workqueue: tipc_rcv tipc_topsrv_accept
RIP: 0010:kernel_accept+0x22d/0x350 net/socket.c:3487
Call Trace:
<TASK>
tipc_topsrv_accept+0x197/0x280 net/tipc/topsrv.c:460
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
It was caused by srv->listener that might be set to null by
tipc_topsrv_stop() in net .exit whereas it's still used in
tipc_topsrv_accept() worker.
srv->listener is protected by srv->idr_lock in tipc_topsrv_stop(), so add
a check for srv->listener under srv->idr_lock in tipc_topsrv_accept() to
avoid the null-ptr-deref. To ensure the lsock is not released during the
tipc_topsrv_accept(), move sock_release() after tipc_topsrv_work_stop()
where it's waiting until the tipc_topsrv_accept worker to be done.
Note that sk_callback_lock is used to protect sk->sk_user_data instead of
srv->listener, and it should check srv in tipc_topsrv_listener_data_ready()
instead. This also ensures that no more tipc_topsrv_accept worker will be
started after tipc_conn_close() is called in tipc_topsrv_stop() where it
sets sk->sk_user_data to null.
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: avoid double ->queue_rq() because of early timeout
David Jeffery found one double ->queue_rq() issue, so far it can
be triggered in VM use case because of long vmexit latency or preempt
latency of vCPU pthread or long page fault in vCPU pthread, then block
IO req could be timed out before queuing the request to hardware but after
calling blk_mq_start_request() during ->queue_rq(), then timeout handler
may handle it by requeue, then double ->queue_rq() is caused, and kernel
panic.
So far, it is driver's responsibility to cover the race between timeout
and completion, so it seems supposed to be solved in driver in theory,
given driver has enough knowledge.
But it is really one common problem, lots of driver could have similar
issue, and could be hard to fix all affected drivers, even it isn't easy
for driver to handle the race. So David suggests this patch by draining
in-progress ->queue_rq() for solving this issue.
In the Linux kernel, the following vulnerability has been resolved:
tracing/hist: Fix out-of-bound write on 'action_data.var_ref_idx'
When generate a synthetic event with many params and then create a trace
action for it [1], kernel panic happened [2].
It is because that in trace_action_create() 'data->n_params' is up to
SYNTH_FIELDS_MAX (current value is 64), and array 'data->var_ref_idx'
keeps indices into array 'hist_data->var_refs' for each synthetic event
param, but the length of 'data->var_ref_idx' is TRACING_MAP_VARS_MAX
(current value is 16), so out-of-bound write happened when 'data->n_params'
more than 16. In this case, 'data->match_data.event' is overwritten and
eventually cause the panic.
To solve the issue, adjust the length of 'data->var_ref_idx' to be
SYNTH_FIELDS_MAX and add sanity checks to avoid out-of-bound write.
[1]
# cd /sys/kernel/tracing/
# echo "my_synth_event int v1; int v2; int v3; int v4; int v5; int v6;\
int v7; int v8; int v9; int v10; int v11; int v12; int v13; int v14;\
int v15; int v16; int v17; int v18; int v19; int v20; int v21; int v22;\
int v23; int v24; int v25; int v26; int v27; int v28; int v29; int v30;\
int v31; int v32; int v33; int v34; int v35; int v36; int v37; int v38;\
int v39; int v40; int v41; int v42; int v43; int v44; int v45; int v46;\
int v47; int v48; int v49; int v50; int v51; int v52; int v53; int v54;\
int v55; int v56; int v57; int v58; int v59; int v60; int v61; int v62;\
int v63" >> synthetic_events
# echo 'hist:keys=pid:ts0=common_timestamp.usecs if comm=="bash"' >> \
events/sched/sched_waking/trigger
# echo "hist:keys=next_pid:onmatch(sched.sched_waking).my_synth_event(\
pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,\
pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,\
pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,\
pid,pid,pid,pid,pid,pid,pid,pid,pid)" >> events/sched/sched_switch/trigger
[2]
BUG: unable to handle page fault for address: ffff91c900000000
PGD 61001067 P4D 61001067 PUD 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 2 PID: 322 Comm: bash Tainted: G W 6.1.0-rc8+ #229
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:strcmp+0xc/0x30
Code: 75 f7 31 d2 44 0f b6 04 16 44 88 04 11 48 83 c2 01 45 84 c0 75 ee
c3 cc cc cc cc 0f 1f 00 31 c0 eb 08 48 83 c0 01 84 d2 74 13 <0f> b6 14
07 3a 14 06 74 ef 19 c0 83 c8 01 c3 cc cc cc cc 31 c3
RSP: 0018:ffff9b3b00f53c48 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffffffffba958a68 RCX: 0000000000000000
RDX: 0000000000000010 RSI: ffff91c943d33a90 RDI: ffff91c900000000
RBP: ffff91c900000000 R08: 00000018d604b529 R09: 0000000000000000
R10: ffff91c9483eddb1 R11: ffff91ca483eddab R12: ffff91c946171580
R13: ffff91c9479f0538 R14: ffff91c9457c2848 R15: ffff91c9479f0538
FS: 00007f1d1cfbe740(0000) GS:ffff91c9bdc80000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff91c900000000 CR3: 0000000006316000 CR4: 00000000000006e0
Call Trace:
<TASK>
__find_event_file+0x55/0x90
action_create+0x76c/0x1060
event_hist_trigger_parse+0x146d/0x2060
? event_trigger_write+0x31/0xd0
trigger_process_regex+0xbb/0x110
event_trigger_write+0x6b/0xd0
vfs_write+0xc8/0x3e0
? alloc_fd+0xc0/0x160
? preempt_count_add+0x4d/0xa0
? preempt_count_add+0x70/0xa0
ksys_write+0x5f/0xe0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f1d1d0cf077
Code: 64 89 02 48 c7 c0 ff ff ff ff eb bb 0f 1f 80 00 00 00 00 f3 0f 1e
fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00
f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74
RSP: 002b:00007ffcebb0e568 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000143 RCX: 00007f1d1d0cf077
RDX: 0000000000000143 RSI: 00005639265aa7e0 RDI: 0000000000000001
RBP: 00005639265aa7e0 R08: 000000000000000a R09: 0000000000000142
R
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: use quiesced elevator switch when reinitializing queues
The hctx's run_work may be racing with the elevator switch when
reinitializing hardware queues. The queue is merely frozen in this
context, but that only prevents requests from allocating and doesn't
stop the hctx work from running. The work may get an elevator pointer
that's being torn down, and can result in use-after-free errors and
kernel panics (example below). Use the quiesced elevator switch instead,
and make the previous one static since it is now only used locally.
nvme nvme0: resetting controller
nvme nvme0: 32/0/0 default/read/poll queues
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 80000020c8861067 P4D 80000020c8861067 PUD 250f8c8067 PMD 0
Oops: 0000 [#1] SMP PTI
Workqueue: kblockd blk_mq_run_work_fn
RIP: 0010:kyber_has_work+0x29/0x70
...
Call Trace:
__blk_mq_do_dispatch_sched+0x83/0x2b0
__blk_mq_sched_dispatch_requests+0x12e/0x170
blk_mq_sched_dispatch_requests+0x30/0x60
__blk_mq_run_hw_queue+0x2b/0x50
process_one_work+0x1ef/0x380
worker_thread+0x2d/0x3e0
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request()
This patch fixes a shift-out-of-bounds in brcmfmac that occurs in
BIT(chiprev) when a 'chiprev' provided by the device is too large.
It should also not be equal to or greater than BITS_PER_TYPE(u32)
as we do bitwise AND with a u32 variable and BIT(chiprev). The patch
adds a check that makes the function return NULL if that is the case.
Note that the NULL case is later handled by the bus-specific caller,
brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example.
Found by a modified version of syzkaller.
UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c
shift exponent 151055786 is too large for 64-bit type 'long unsigned int'
CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x57/0x7d
ubsan_epilogue+0x5/0x40
__ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb
? lock_chain_count+0x20/0x20
brcmf_fw_alloc_request.cold+0x19/0x3ea
? brcmf_fw_get_firmwares+0x250/0x250
? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0
brcmf_usb_get_fwname+0x114/0x1a0
? brcmf_usb_reset_resume+0x120/0x120
? number+0x6c4/0x9a0
brcmf_c_process_clm_blob+0x168/0x590
? put_dec+0x90/0x90
? enable_ptr_key_workfn+0x20/0x20
? brcmf_common_pd_remove+0x50/0x50
? rcu_read_lock_sched_held+0xa1/0xd0
brcmf_c_preinit_dcmds+0x673/0xc40
? brcmf_c_set_joinpref_default+0x100/0x100
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lock_acquire+0x19d/0x4e0
? find_held_lock+0x2d/0x110
? brcmf_usb_deq+0x1cc/0x260
? mark_held_locks+0x9f/0xe0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? _raw_spin_unlock_irqrestore+0x47/0x50
? trace_hardirqs_on+0x1c/0x120
? brcmf_usb_deq+0x1a7/0x260
? brcmf_usb_rx_fill_all+0x5a/0xf0
brcmf_attach+0x246/0xd40
? wiphy_new_nm+0x1476/0x1d50
? kmemdup+0x30/0x40
brcmf_usb_probe+0x12de/0x1690
? brcmf_usbdev_qinit.constprop.0+0x470/0x470
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
? usb_match_id.part.0+0x88/0xc0
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __mutex_unlock_slowpath+0xe7/0x660
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_set_configuration+0x984/0x1770
? kernfs_create_link+0x175/0x230
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_new_device.cold+0x463/0xf66
? hub_disconnect+0x400/0x400
? _raw_spin_unlock_irq+0x24/0x30
hub_event+0x10d5/0x3330
? hub_port_debounce+0x280/0x280
? __lock_acquire+0x1671/0x5790
? wq_calc_node_cpumask+0x170/0x2a0
? lock_release+0x640/0x640
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
process_one_work+0x873/0x13e0
? lock_release+0x640/0x640
? pwq_dec_nr_in_flight+0x320/0x320
? rwlock_bug.part.0+0x90/0x90
worker_thread+0x8b/0xd10
? __kthread_parkme+0xd9/0x1d0
? pr
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
blk-iolatency: Fix memory leak on add_disk() failures
When a gendisk is successfully initialized but add_disk() fails such as when
a loop device has invalid number of minor device numbers specified,
blkcg_init_disk() is called during init and then blkcg_exit_disk() during
error handling. Unfortunately, iolatency gets initialized in the former but
doesn't get cleaned up in the latter.
This is because, in non-error cases, the cleanup is performed by
del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos
policies, iolatency being one of them, can only be activated once the disk
is fully registered and visible. That assumption is true for wbt and iocost,
but not so for iolatency as it gets initialized before add_disk() is called.
It is desirable to lazy-init rq_qos policies because they are optional
features and add to hot path overhead once initialized - each IO has to walk
all the registered rq_qos policies. So, we want to switch iolatency to lazy
init too. However, that's a bigger change. As a fix for the immediate
problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk().
This is safe because duplicate calls to rq_qos_exit() become noop's.
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: hi846: Fix memory leak in hi846_parse_dt()
If any of the checks related to the supported link frequencies fail, then
the V4L2 fwnode resources don't get released before returning, which leads
to a memleak. Fix this by properly freeing the V4L2 fwnode data in a
designated label.
In the Linux kernel, the following vulnerability has been resolved:
media: solo6x10: fix possible memory leak in solo_sysfs_init()
If device_register() returns error in solo_sysfs_init(), the
name allocated by dev_set_name() need be freed. As comment of
device_register() says, it should use put_device() to give up
the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanup().
In the Linux kernel, the following vulnerability has been resolved:
r6040: Fix kmemleak in probe and remove
There is a memory leaks reported by kmemleak:
unreferenced object 0xffff888116111000 (size 2048):
comm "modprobe", pid 817, jiffies 4294759745 (age 76.502s)
hex dump (first 32 bytes):
00 c4 0a 04 81 88 ff ff 08 10 11 16 81 88 ff ff ................
08 10 11 16 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff815bcd82>] kmalloc_trace+0x22/0x60
[<ffffffff827e20ee>] phy_device_create+0x4e/0x90
[<ffffffff827e6072>] get_phy_device+0xd2/0x220
[<ffffffff827e7844>] mdiobus_scan+0xa4/0x2e0
[<ffffffff827e8be2>] __mdiobus_register+0x482/0x8b0
[<ffffffffa01f5d24>] r6040_init_one+0x714/0xd2c [r6040]
...
The problem occurs in probe process as follows:
r6040_init_one:
mdiobus_register
mdiobus_scan <- alloc and register phy_device,
the reference count of phy_device is 3
r6040_mii_probe
phy_connect <- connect to the first phy_device,
so the reference count of the first
phy_device is 4, others are 3
register_netdev <- fault inject succeeded, goto error handling path
// error handling path
err_out_mdio_unregister:
mdiobus_unregister(lp->mii_bus);
err_out_mdio:
mdiobus_free(lp->mii_bus); <- the reference count of the first
phy_device is 1, it is not released
and other phy_devices are released
// similarly, the remove process also has the same problem
The root cause is traced to the phy_device is not disconnected when
removes one r6040 device in r6040_remove_one() or on error handling path
after r6040_mii probed successfully. In r6040_mii_probe(), a net ethernet
device is connected to the first PHY device of mii_bus, in order to
notify the connected driver when the link status changes, which is the
default behavior of the PHY infrastructure to handle everything.
Therefore the phy_device should be disconnected when removes one r6040
device or on error handling path.
Fix it by adding phy_disconnect() when removes one r6040 device or on
error handling path after r6040_mii probed successfully.
In the Linux kernel, the following vulnerability has been resolved:
usb: host: xhci: Fix potential memory leak in xhci_alloc_stream_info()
xhci_alloc_stream_info() allocates stream context array for stream_info
->stream_ctx_array with xhci_alloc_stream_ctx(). When some error occurs,
stream_info->stream_ctx_array is not released, which will lead to a
memory leak.
We can fix it by releasing the stream_info->stream_ctx_array with
xhci_free_stream_ctx() on the error path to avoid the potential memory
leak.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix mr->map double free
rxe_mr_cleanup() which tries to free mr->map again will be called when
rxe_mr_init_user() fails:
CPU: 0 PID: 4917 Comm: rdma_flush_serv Kdump: loaded Not tainted 6.1.0-rc1-roce-flush+ #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x5d
panic+0x19e/0x349
end_report.part.0+0x54/0x7c
kasan_report.cold+0xa/0xf
rxe_mr_cleanup+0x9d/0xf0 [rdma_rxe]
__rxe_cleanup+0x10a/0x1e0 [rdma_rxe]
rxe_reg_user_mr+0xb7/0xd0 [rdma_rxe]
ib_uverbs_reg_mr+0x26a/0x480 [ib_uverbs]
ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x1a2/0x250 [ib_uverbs]
ib_uverbs_cmd_verbs+0x1397/0x15a0 [ib_uverbs]
This issue was firstly exposed since commit b18c7da63fcb ("RDMA/rxe: Fix
memory leak in error path code") and then we fixed it in commit
8ff5f5d9d8cf ("RDMA/rxe: Prevent double freeing rxe_map_set()") but this
fix was reverted together at last by commit 1e75550648da (Revert
"RDMA/rxe: Create duplicate mapping tables for FMRs")
Simply let rxe_mr_cleanup() always handle freeing the mr->map once it is
successfully allocated.
In the Linux kernel, the following vulnerability has been resolved:
media: si470x: Fix use-after-free in si470x_int_in_callback()
syzbot reported use-after-free in si470x_int_in_callback() [1]. This
indicates that urb->context, which contains struct si470x_device
object, is freed when si470x_int_in_callback() is called.
The cause of this issue is that si470x_int_in_callback() is called for
freed urb.
si470x_usb_driver_probe() calls si470x_start_usb(), which then calls
usb_submit_urb() and si470x_start(). If si470x_start_usb() fails,
si470x_usb_driver_probe() doesn't kill urb, but it just frees struct
si470x_device object, as depicted below:
si470x_usb_driver_probe()
...
si470x_start_usb()
...
usb_submit_urb()
retval = si470x_start()
return retval
if (retval < 0)
free struct si470x_device object, but don't kill urb
This patch fixes this issue by killing urb when si470x_start_usb()
fails and urb is submitted. If si470x_start_usb() fails and urb is
not submitted, i.e. submitting usb fails, it just frees struct
si470x_device object.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: k3-udma: Reset UDMA_CHAN_RT byte counters to prevent overflow
UDMA_CHAN_RT_*BCNT_REG stores the real-time channel bytecount statistics.
These registers are 32-bit hardware counters and the driver uses these
counters to monitor the operational progress status for a channel, when
transferring more than 4GB of data it was observed that these counters
overflow and completion calculation of a operation gets affected and the
transfer hangs indefinitely.
This commit adds changes to decrease the byte count for every complete
transaction so that these registers never overflow and the proper byte
count statistics is maintained for ongoing transaction by the RT counters.
Earlier uc->bcnt used to maintain a count of the completed bytes at driver
side, since the RT counters maintain the statistics of current transaction
now, the maintenance of uc->bcnt is not necessary.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: qcom-adm: fix wrong sizeof config in slave_config
Fix broken slave_config function that uncorrectly compare the
peripheral_size with the size of the config pointer instead of the size
of the config struct. This cause the crci value to be ignored and cause
a kernel panic on any slave that use adm driver.
To fix this, compare to the size of the struct and NOT the size of the
pointer.
In the Linux kernel, the following vulnerability has been resolved:
ARM: OMAP2+: omap4-common: Fix refcount leak bug
In omap4_sram_init(), of_find_compatible_node() will return a node
pointer with refcount incremented. We should use of_node_put() when
it is not used anymore.
In the Linux kernel, the following vulnerability has been resolved:
vme: Fix error not catched in fake_init()
In fake_init(), __root_device_register() is possible to fail but it's
ignored, which can cause unregistering vme_root fail when exit.
general protection fault,
probably for non-canonical address 0xdffffc000000008c
KASAN: null-ptr-deref in range [0x0000000000000460-0x0000000000000467]
RIP: 0010:root_device_unregister+0x26/0x60
Call Trace:
<TASK>
__x64_sys_delete_module+0x34f/0x540
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Return error when __root_device_register() fails.
In the Linux kernel, the following vulnerability has been resolved:
firmware: raspberrypi: fix possible memory leak in rpi_firmware_probe()
In rpi_firmware_probe(), if mbox_request_channel() fails, the 'fw' will
not be freed through rpi_firmware_delete(), fix this leak by calling
kfree() in the error path.
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix repeated calls to sock_put() when msg has more_data
In tcp_bpf_send_verdict() redirection, the eval variable is assigned to
__SK_REDIRECT after the apply_bytes data is sent, if msg has more_data,
sock_put() will be called multiple times.
We should reset the eval variable to __SK_NONE every time more_data
starts.
This causes:
IPv4: Attempt to release TCP socket in state 1 00000000b4c925d7
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 5 PID: 4482 at lib/refcount.c:25 refcount_warn_saturate+0x7d/0x110
Modules linked in:
CPU: 5 PID: 4482 Comm: sockhash_bypass Kdump: loaded Not tainted 6.0.0 #1
Hardware name: Red Hat KVM, BIOS 1.11.0-2.el7 04/01/2014
Call Trace:
<TASK>
__tcp_transmit_skb+0xa1b/0xb90
? __alloc_skb+0x8c/0x1a0
? __kmalloc_node_track_caller+0x184/0x320
tcp_write_xmit+0x22a/0x1110
__tcp_push_pending_frames+0x32/0xf0
do_tcp_sendpages+0x62d/0x640
tcp_bpf_push+0xae/0x2c0
tcp_bpf_sendmsg_redir+0x260/0x410
? preempt_count_add+0x70/0xa0
tcp_bpf_send_verdict+0x386/0x4b0
tcp_bpf_sendmsg+0x21b/0x3b0
sock_sendmsg+0x58/0x70
__sys_sendto+0xfa/0x170
? xfd_validate_state+0x1d/0x80
? switch_fpu_return+0x59/0xe0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential null-deref in dm_resume
[Why]
Fixing smatch error:
dm_resume() error: we previously assumed 'aconnector->dc_link' could be null
[How]
Check if dc_link null at the beginning of the loop,
so further checks can be dropped.
In the Linux kernel, the following vulnerability has been resolved:
dm thin: Use last transaction's pmd->root when commit failed
Recently we found a softlock up problem in dm thin pool btree lookup
code due to corrupted metadata:
Kernel panic - not syncing: softlockup: hung tasks
CPU: 7 PID: 2669225 Comm: kworker/u16:3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: dm-thin do_worker [dm_thin_pool]
Call Trace:
<IRQ>
dump_stack+0x9c/0xd3
panic+0x35d/0x6b9
watchdog_timer_fn.cold+0x16/0x25
__run_hrtimer+0xa2/0x2d0
</IRQ>
RIP: 0010:__relink_lru+0x102/0x220 [dm_bufio]
__bufio_new+0x11f/0x4f0 [dm_bufio]
new_read+0xa3/0x1e0 [dm_bufio]
dm_bm_read_lock+0x33/0xd0 [dm_persistent_data]
ro_step+0x63/0x100 [dm_persistent_data]
btree_lookup_raw.constprop.0+0x44/0x220 [dm_persistent_data]
dm_btree_lookup+0x16f/0x210 [dm_persistent_data]
dm_thin_find_block+0x12c/0x210 [dm_thin_pool]
__process_bio_read_only+0xc5/0x400 [dm_thin_pool]
process_thin_deferred_bios+0x1a4/0x4a0 [dm_thin_pool]
process_one_work+0x3c5/0x730
Following process may generate a broken btree mixed with fresh and
stale btree nodes, which could get dm thin trapped in an infinite loop
while looking up data block:
Transaction 1: pmd->root = A, A->B->C // One path in btree
pmd->root = X, X->Y->Z // Copy-up
Transaction 2: X,Z is updated on disk, Y write failed.
// Commit failed, dm thin becomes read-only.
process_bio_read_only
dm_thin_find_block
__find_block
dm_btree_lookup(pmd->root)
The pmd->root points to a broken btree, Y may contain stale node
pointing to any block, for example X, which gets dm thin trapped into
a dead loop while looking up Z.
Fix this by setting pmd->root in __open_metadata(), so that dm thin
will use the last transaction's pmd->root if commit failed.
Fetch a reproducer in [Link].
Linke: https://bugzilla.kernel.org/show_bug.cgi?id=216790
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: mlme: fix null-ptr deref on failed assoc
If association to an AP without a link 0 fails, then we crash in
tracing because it assumes that either ap_mld_addr or link 0 BSS
is valid, since we clear sdata->vif.valid_links and then don't
add the ap_mld_addr to the struct.
Since we clear also sdata->vif.cfg.ap_addr, keep a local copy of
it and assign it earlier, before clearing valid_links, to fix
this.
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpt3sas: Fix possible resource leaks in mpt3sas_transport_port_add()
In mpt3sas_transport_port_add(), if sas_rphy_add() returns error,
sas_rphy_free() needs be called to free the resource allocated in
sas_end_device_alloc(). Otherwise a kernel crash will happen:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000108
CPU: 45 PID: 37020 Comm: bash Kdump: loaded Tainted: G W 6.1.0-rc1+ #189
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : device_del+0x54/0x3d0
lr : device_del+0x37c/0x3d0
Call trace:
device_del+0x54/0x3d0
attribute_container_class_device_del+0x28/0x38
transport_remove_classdev+0x6c/0x80
attribute_container_device_trigger+0x108/0x110
transport_remove_device+0x28/0x38
sas_rphy_remove+0x50/0x78 [scsi_transport_sas]
sas_port_delete+0x30/0x148 [scsi_transport_sas]
do_sas_phy_delete+0x78/0x80 [scsi_transport_sas]
device_for_each_child+0x68/0xb0
sas_remove_children+0x30/0x50 [scsi_transport_sas]
sas_rphy_remove+0x38/0x78 [scsi_transport_sas]
sas_port_delete+0x30/0x148 [scsi_transport_sas]
do_sas_phy_delete+0x78/0x80 [scsi_transport_sas]
device_for_each_child+0x68/0xb0
sas_remove_children+0x30/0x50 [scsi_transport_sas]
sas_remove_host+0x20/0x38 [scsi_transport_sas]
scsih_remove+0xd8/0x420 [mpt3sas]
Because transport_add_device() is not called when sas_rphy_add() fails, the
device is not added. When sas_rphy_remove() is subsequently called to
remove the device in the remove() path, a NULL pointer dereference happens.
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix an information leak in tipc_topsrv_kern_subscr
Use a 8-byte write to initialize sub.usr_handle in
tipc_topsrv_kern_subscr(), otherwise four bytes remain uninitialized
when issuing setsockopt(..., SOL_TIPC, ...).
This resulted in an infoleak reported by KMSAN when the packet was
received:
=====================================================
BUG: KMSAN: kernel-infoleak in copyout+0xbc/0x100 lib/iov_iter.c:169
instrument_copy_to_user ./include/linux/instrumented.h:121
copyout+0xbc/0x100 lib/iov_iter.c:169
_copy_to_iter+0x5c0/0x20a0 lib/iov_iter.c:527
copy_to_iter ./include/linux/uio.h:176
simple_copy_to_iter+0x64/0xa0 net/core/datagram.c:513
__skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419
skb_copy_datagram_iter+0x58/0x200 net/core/datagram.c:527
skb_copy_datagram_msg ./include/linux/skbuff.h:3903
packet_recvmsg+0x521/0x1e70 net/packet/af_packet.c:3469
____sys_recvmsg+0x2c4/0x810 net/socket.c:?
___sys_recvmsg+0x217/0x840 net/socket.c:2743
__sys_recvmsg net/socket.c:2773
__do_sys_recvmsg net/socket.c:2783
__se_sys_recvmsg net/socket.c:2780
__x64_sys_recvmsg+0x364/0x540 net/socket.c:2780
do_syscall_x64 arch/x86/entry/common.c:50
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120
...
Uninit was stored to memory at:
tipc_sub_subscribe+0x42d/0xb50 net/tipc/subscr.c:156
tipc_conn_rcv_sub+0x246/0x620 net/tipc/topsrv.c:375
tipc_topsrv_kern_subscr+0x2e8/0x400 net/tipc/topsrv.c:579
tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190
tipc_sk_join+0x2a8/0x770 net/tipc/socket.c:3084
tipc_setsockopt+0xae5/0xe40 net/tipc/socket.c:3201
__sys_setsockopt+0x87f/0xdc0 net/socket.c:2252
__do_sys_setsockopt net/socket.c:2263
__se_sys_setsockopt net/socket.c:2260
__x64_sys_setsockopt+0xe0/0x160 net/socket.c:2260
do_syscall_x64 arch/x86/entry/common.c:50
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120
Local variable sub created at:
tipc_topsrv_kern_subscr+0x57/0x400 net/tipc/topsrv.c:562
tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190
Bytes 84-87 of 88 are uninitialized
Memory access of size 88 starts at ffff88801ed57cd0
Data copied to user address 0000000020000400
...
=====================================================
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix null pointer dereference in blk_mq_clear_rq_mapping()
Our syzkaller report a null pointer dereference, root cause is
following:
__blk_mq_alloc_map_and_rqs
set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs
blk_mq_alloc_map_and_rqs
blk_mq_alloc_rqs
// failed due to oom
alloc_pages_node
// set->tags[hctx_idx] is still NULL
blk_mq_free_rqs
drv_tags = set->tags[hctx_idx];
// null pointer dereference is triggered
blk_mq_clear_rq_mapping(drv_tags, ...)
This is because commit 63064be150e4 ("blk-mq:
Add blk_mq_alloc_map_and_rqs()") merged the two steps:
1) set->tags[hctx_idx] = blk_mq_alloc_rq_map()
2) blk_mq_alloc_rqs(..., set->tags[hctx_idx])
into one step:
set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs()
Since tags is not initialized yet in this case, fix the problem by
checking if tags is NULL pointer in blk_mq_clear_rq_mapping().
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix memory leakage
This patch fixes potential memory leakage and seg fault
in _gpuvm_import_dmabuf() function
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix size validation for non-exclusive domains (v4)
Fix amdgpu_bo_validate_size() to check whether the TTM domain manager for the
requested memory exists, else we get a kernel oops when dereferencing "man".
v2: Make the patch standalone, i.e. not dependent on local patches.
v3: Preserve old behaviour and just check that the manager pointer is not
NULL.
v4: Complain if GTT domain requested and it is uninitialized--most likely a
bug.
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: fix memory corruption with too many bridges
Add the missing sanity check on the bridge counter to avoid corrupting
data beyond the fixed-sized bridge array in case there are ever more
than eight bridges.
Patchwork: https://patchwork.freedesktop.org/patch/502664/
In the Linux kernel, the following vulnerability has been resolved:
iommu/fsl_pamu: Fix resource leak in fsl_pamu_probe()
The fsl_pamu_probe() returns directly when create_csd() failed, leaving
irq and memories unreleased.
Fix by jumping to error if create_csd() returns error.
In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Check return value after calling platform_get_resource()
platform_get_resource() may return NULL pointer, we need check its
return value to avoid null-ptr-deref in resource_size().
In the Linux kernel, the following vulnerability has been resolved:
clk: rockchip: Fix memory leak in rockchip_clk_register_pll()
If clk_register() fails, @pll->rate_table may have allocated memory by
kmemdup(), so it needs to be freed, otherwise will cause memory leak
issue, this patch fixes it.
In the Linux kernel, the following vulnerability has been resolved:
mcb: mcb-parse: fix error handing in chameleon_parse_gdd()
If mcb_device_register() returns error in chameleon_parse_gdd(), the refcount
of bus and device name are leaked. Fix this by calling put_device() to give up
the reference, so they can be released in mcb_release_dev() and kobject_cleanup().
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: mxm-wmi: fix memleak in mxm_wmi_call_mx[ds|mx]()
The ACPI buffer memory (out.pointer) returned by wmi_evaluate_method()
is not freed after the call, so it leads to memory leak.
The method results in ACPI buffer is not used, so just pass NULL to
wmi_evaluate_method() which fixes the memory leak.
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Fix PCI device refcount leak in radeon_atrm_get_bios()
As comment of pci_get_class() says, it returns a pci_device with its
refcount increased and decreased the refcount for the input parameter
@from if it is not NULL.
If we break the loop in radeon_atrm_get_bios() with 'pdev' not NULL, we
need to call pci_dev_put() to decrease the refcount. Add the missing
pci_dev_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure
If creation or finalization of a checkpoint fails due to anomalies in the
checkpoint metadata on disk, a kernel warning is generated.
This patch replaces the WARN_ONs by nilfs_error, so that a kernel, booted
with panic_on_warn, does not panic. A nilfs_error is appropriate here to
handle the abnormal filesystem condition.
This also replaces the detected error codes with an I/O error so that
neither of the internal error codes is returned to callers.
In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix locking in pdc_iodc_print() firmware call
Utilize pdc_lock spinlock to protect parallel modifications of the
iodc_dbuf[] buffer, check length to prevent buffer overflow of
iodc_dbuf[], drop the iodc_retbuf[] buffer and fix some wrong
indentings.
In the Linux kernel, the following vulnerability has been resolved:
mm/huge_memory: do not clobber swp_entry_t during THP split
The following has been observed when running stressng mmap since commit
b653db77350c ("mm: Clear page->private when splitting or migrating a page")
watchdog: BUG: soft lockup - CPU#75 stuck for 26s! [stress-ng:9546]
CPU: 75 PID: 9546 Comm: stress-ng Tainted: G E 6.0.0-revert-b653db77-fix+ #29 0357d79b60fb09775f678e4f3f64ef0579ad1374
Hardware name: SGI.COM C2112-4GP3/X10DRT-P-Series, BIOS 2.0a 05/09/2016
RIP: 0010:xas_descend+0x28/0x80
Code: cc cc 0f b6 0e 48 8b 57 08 48 d3 ea 83 e2 3f 89 d0 48 83 c0 04 48 8b 44 c6 08 48 89 77 18 48 89 c1 83 e1 03 48 83 f9 02 75 08 <48> 3d fd 00 00 00 76 08 88 57 12 c3 cc cc cc cc 48 c1 e8 02 89 c2
RSP: 0018:ffffbbf02a2236a8 EFLAGS: 00000246
RAX: ffff9cab7d6a0002 RBX: ffffe04b0af88040 RCX: 0000000000000002
RDX: 0000000000000030 RSI: ffff9cab60509b60 RDI: ffffbbf02a2236c0
RBP: 0000000000000000 R08: ffff9cab60509b60 R09: ffffbbf02a2236c0
R10: 0000000000000001 R11: ffffbbf02a223698 R12: 0000000000000000
R13: ffff9cab4e28da80 R14: 0000000000039c01 R15: ffff9cab4e28da88
FS: 00007fab89b85e40(0000) GS:ffff9cea3fcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fab84e00000 CR3: 00000040b73a4003 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xas_load+0x3a/0x50
__filemap_get_folio+0x80/0x370
? put_swap_page+0x163/0x360
pagecache_get_page+0x13/0x90
__try_to_reclaim_swap+0x50/0x190
scan_swap_map_slots+0x31e/0x670
get_swap_pages+0x226/0x3c0
folio_alloc_swap+0x1cc/0x240
add_to_swap+0x14/0x70
shrink_page_list+0x968/0xbc0
reclaim_page_list+0x70/0xf0
reclaim_pages+0xdd/0x120
madvise_cold_or_pageout_pte_range+0x814/0xf30
walk_pgd_range+0x637/0xa30
__walk_page_range+0x142/0x170
walk_page_range+0x146/0x170
madvise_pageout+0xb7/0x280
? asm_common_interrupt+0x22/0x40
madvise_vma_behavior+0x3b7/0xac0
? find_vma+0x4a/0x70
? find_vma+0x64/0x70
? madvise_vma_anon_name+0x40/0x40
madvise_walk_vmas+0xa6/0x130
do_madvise+0x2f4/0x360
__x64_sys_madvise+0x26/0x30
do_syscall_64+0x5b/0x80
? do_syscall_64+0x67/0x80
? syscall_exit_to_user_mode+0x17/0x40
? do_syscall_64+0x67/0x80
? syscall_exit_to_user_mode+0x17/0x40
? do_syscall_64+0x67/0x80
? do_syscall_64+0x67/0x80
? common_interrupt+0x8b/0xa0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The problem can be reproduced with the mmtests config
config-workload-stressng-mmap. It does not always happen and when it
triggers is variable but it has happened on multiple machines.
The intent of commit b653db77350c patch was to avoid the case where
PG_private is clear but folio->private is not-NULL. However, THP tail
pages uses page->private for "swp_entry_t if folio_test_swapcache()" as
stated in the documentation for struct folio. This patch only clobbers
page->private for tail pages if the head page was not in swapcache and
warns once if page->private had an unexpected value.