In the Linux kernel, the following vulnerability has been resolved:
fs: dlm: fix invalid derefence of sb_lvbptr
I experience issues when putting a lkbsb on the stack and have sb_lvbptr
field to a dangled pointer while not using DLM_LKF_VALBLK. It will crash
with the following kernel message, the dangled pointer is here
0xdeadbeef as example:
[ 102.749317] BUG: unable to handle page fault for address: 00000000deadbeef
[ 102.749320] #PF: supervisor read access in kernel mode
[ 102.749323] #PF: error_code(0x0000) - not-present page
[ 102.749325] PGD 0 P4D 0
[ 102.749332] Oops: 0000 [#1] PREEMPT SMP PTI
[ 102.749336] CPU: 0 PID: 1567 Comm: lock_torture_wr Tainted: G W 5.19.0-rc3+ #1565
[ 102.749343] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-2.module+el8.7.0+15506+033991b0 04/01/2014
[ 102.749344] RIP: 0010:memcpy_erms+0x6/0x10
[ 102.749353] Code: cc cc cc cc eb 1e 0f 1f 00 48 89 f8 48 89 d1 48 c1 e9 03 83 e2 07 f3 48 a5 89 d1 f3 a4 c3 66 0f 1f 44 00 00 48 89 f8 48 89 d1 <f3> a4 c3 0f 1f 80 00 00 00 00 48 89 f8 48 83 fa 20 72 7e 40 38 fe
[ 102.749355] RSP: 0018:ffff97a58145fd08 EFLAGS: 00010202
[ 102.749358] RAX: ffff901778b77070 RBX: 0000000000000000 RCX: 0000000000000040
[ 102.749360] RDX: 0000000000000040 RSI: 00000000deadbeef RDI: ffff901778b77070
[ 102.749362] RBP: ffff97a58145fd10 R08: ffff901760b67a70 R09: 0000000000000001
[ 102.749364] R10: ffff9017008e2cb8 R11: 0000000000000001 R12: ffff901760b67a70
[ 102.749366] R13: ffff901760b78f00 R14: 0000000000000003 R15: 0000000000000001
[ 102.749368] FS: 0000000000000000(0000) GS:ffff901876e00000(0000) knlGS:0000000000000000
[ 102.749372] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 102.749374] CR2: 00000000deadbeef CR3: 000000017c49a004 CR4: 0000000000770ef0
[ 102.749376] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 102.749378] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 102.749379] PKRU: 55555554
[ 102.749381] Call Trace:
[ 102.749382] <TASK>
[ 102.749383] ? send_args+0xb2/0xd0
[ 102.749389] send_common+0xb7/0xd0
[ 102.749395] _unlock_lock+0x2c/0x90
[ 102.749400] unlock_lock.isra.56+0x62/0xa0
[ 102.749405] dlm_unlock+0x21e/0x330
[ 102.749411] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 102.749416] torture_unlock+0x5a/0x90 [dlm_locktorture]
[ 102.749419] ? preempt_count_sub+0xba/0x100
[ 102.749427] lock_torture_writer+0xbd/0x150 [dlm_locktorture]
[ 102.786186] kthread+0x10a/0x130
[ 102.786581] ? kthread_complete_and_exit+0x20/0x20
[ 102.787156] ret_from_fork+0x22/0x30
[ 102.787588] </TASK>
[ 102.787855] Modules linked in: dlm_locktorture torture rpcsec_gss_krb5 intel_rapl_msr intel_rapl_common kvm_intel iTCO_wdt iTCO_vendor_support kvm vmw_vsock_virtio_transport qxl irqbypass vmw_vsock_virtio_transport_common drm_ttm_helper crc32_pclmul joydev crc32c_intel ttm vsock virtio_scsi virtio_balloon snd_pcm drm_kms_helper virtio_console snd_timer snd drm soundcore syscopyarea i2c_i801 sysfillrect sysimgblt i2c_smbus pcspkr fb_sys_fops lpc_ich serio_raw
[ 102.792536] CR2: 00000000deadbeef
[ 102.792930] ---[ end trace 0000000000000000 ]---
This patch fixes the issue by checking also on DLM_LKF_VALBLK on exflags
is set when copying the lvbptr array instead of if it's just null which
fixes for me the issue.
I think this patch can fix other dlm users as well, depending how they
handle the init, freeing memory handling of sb_lvbptr and don't set
DLM_LKF_VALBLK for some dlm_lock() calls. It might a there could be a
hidden issue all the time. However with checking on DLM_LKF_VALBLK the
user always need to provide a sb_lvbptr non-null value. There might be
more intelligent handling between per ls lvblen, DLM_LKF_VALBLK and
non-null to report the user the way how DLM API is used is wrong but can
be added for later, this will only fix the current behaviour.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix memory leak in hpd_rx_irq_create_workqueue()
If construction of the array of work queues to handle hpd_rx_irq offload
work fails, we need to unwind. Destroy all the created workqueues and
the allocated memory for the hpd_rx_irq_offload_work_queue struct array.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_hid: fix refcount leak on error path
When failing to allocate report_desc, opts->refcnt has already been
incremented so it needs to be decremented to avoid leaving the options
structure permanently locked.
In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix a potential memory leak in rtw_init_cmd_priv()
In rtw_init_cmd_priv(), if `pcmdpriv->rsp_allocated_buf` is allocated
in failure, then `pcmdpriv->cmd_allocated_buf` will be not properly
released. Besides, considering there are only two error paths and the
first one can directly return, so we do not need implicitly jump to the
`exit` tag to execute the error handler.
So this patch added `kfree(pcmdpriv->cmd_allocated_buf);` on the error
path to release the resource and simplified the return logic of
rtw_init_cmd_priv(). As there is no proper device to test with, no runtime
testing was performed.
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix potential memory leak in ext4_fc_record_regions()
As krealloc may return NULL, in this case 'state->fc_regions' may not be
freed by krealloc, but 'state->fc_regions' already set NULL. Then will
lead to 'state->fc_regions' memory leak.
In the Linux kernel, the following vulnerability has been resolved:
lib/fonts: fix undefined behavior in bit shift for get_default_font
Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:
UBSAN: shift-out-of-bounds in lib/fonts/fonts.c:139:20
left shift of 1 by 31 places cannot be represented in type 'int'
<TASK>
dump_stack_lvl+0x7d/0xa5
dump_stack+0x15/0x1b
ubsan_epilogue+0xe/0x4e
__ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
get_default_font+0x1c7/0x1f0
fbcon_startup+0x347/0x3a0
do_take_over_console+0xce/0x270
do_fbcon_takeover+0xa1/0x170
do_fb_registered+0x2a8/0x340
fbcon_fb_registered+0x47/0xe0
register_framebuffer+0x294/0x4a0
__drm_fb_helper_initial_config_and_unlock+0x43c/0x880 [drm_kms_helper]
drm_fb_helper_initial_config+0x52/0x80 [drm_kms_helper]
drm_fbdev_client_hotplug+0x156/0x1b0 [drm_kms_helper]
drm_fbdev_generic_setup+0xfc/0x290 [drm_kms_helper]
bochs_pci_probe+0x6ca/0x772 [bochs]
local_pci_probe+0x4d/0xb0
pci_device_probe+0x119/0x320
really_probe+0x181/0x550
__driver_probe_device+0xc6/0x220
driver_probe_device+0x32/0x100
__driver_attach+0x195/0x200
bus_for_each_dev+0xbb/0x120
driver_attach+0x27/0x30
bus_add_driver+0x22e/0x2f0
driver_register+0xa9/0x190
__pci_register_driver+0x90/0xa0
bochs_pci_driver_init+0x52/0x1000 [bochs]
do_one_initcall+0x76/0x430
do_init_module+0x61/0x28a
load_module+0x1f82/0x2e50
__do_sys_finit_module+0xf8/0x190
__x64_sys_finit_module+0x23/0x30
do_syscall_64+0x58/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
perf/smmuv3: Fix hotplug callback leak in arm_smmu_pmu_init()
arm_smmu_pmu_init() won't remove the callback added by
cpuhp_setup_state_multi() when platform_driver_register() failed. Remove
the callback by cpuhp_remove_multi_state() in fail path.
Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus:
arm-ccn: Prevent hotplug callback leak")
In the Linux kernel, the following vulnerability has been resolved:
media: coda: Add check for kmalloc
As the kmalloc may return NULL pointer,
it should be better to check the return value
in order to avoid NULL poineter dereference,
same as the others.
Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, `Rack::Multipart::Parser` can accumulate unbounded data when a multipart partβs header block never terminates with the required blank line (`CRLFCRLF`). The parser keeps appending incoming bytes to memory without a size cap, allowing a remote attacker to exhaust memory and cause a denial of service (DoS). Attackers can send incomplete multipart headers to trigger high memory use, leading to process termination (OOM) or severe slowdown. The effect scales with request size limits and concurrency. All applications handling multipart uploads may be affected. Versions 2.2.19, 3.1.17, and 3.2.2 cap per-part header size (e.g., 64 KiB). As a workaround, restrict maximum request sizes at the proxy or web server layer (e.g., Nginx `client_max_body_size`).
Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, ``Rack::Multipart::Parser` stores non-file form fields (parts without a `filename`) entirely in memory as Ruby `String` objects. A single large text field in a multipart/form-data request (hundreds of megabytes or more) can consume equivalent process memory, potentially leading to out-of-memory (OOM) conditions and denial of service (DoS). Attackers can send large non-file fields to trigger excessive memory usage. Impact scales with request size and concurrency, potentially leading to worker crashes or severe garbage-collection overhead. All Rack applications processing multipart form submissions are affected. Versions 2.2.19, 3.1.17, and 3.2.2 enforce a reasonable size cap for non-file fields (e.g., 2 MiB). Workarounds include restricting maximum request body size at the web-server or proxy layer (e.g., Nginx `client_max_body_size`) and validating and rejecting unusually large form fields at the application level.
Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, `Rack::Multipart::Parser` buffers the entire multipart preamble (bytes before the first boundary) in memory without any size limit. A client can send a large preamble followed by a valid boundary, causing significant memory use and potential process termination due to out-of-memory (OOM) conditions. Remote attackers can trigger large transient memory spikes by including a long preamble in multipart/form-data requests. The impact scales with allowed request sizes and concurrency, potentially causing worker crashes or severe slowdown due to garbage collection. Versions 2.2.19, 3.1.17, and 3.2.2 enforce a preamble size limit (e.g., 16 KiB) or discard preamble data entirely. Workarounds include limiting total request body size at the proxy or web server level and monitoring memory and set per-process limits to prevent OOM conditions.
A weakness has been identified in SourceCodester Hotel and Lodge Management System 1.0. The impacted element is an unknown function of the file /profile.php of the component Profile Page. Executing manipulation of the argument image can lead to unrestricted upload. The attack may be launched remotely. The exploit has been made available to the public and could be exploited.
A potential security vulnerability has been identified in HP Sure Startβs protection of the Intel Flash Descriptor in certain HP PC products, which might allow security bypass, arbitrary code execution, loss of integrity or confidentiality, or denial of service. HP is releasing BIOS updates to mitigate the potential vulnerability.
vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM's built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue.
CubeAPM nightly-2025-08-01-1 allow unauthenticated attackers to inject arbitrary log entries into production systems via the /api/logs/insert/elasticsearch/_bulk endpoint. This endpoint accepts bulk log data without requiring authentication or input validation, allowing remote attackers to perform unauthorized log injection. Exploitation may lead to false log entries, log poisoning, alert obfuscation, and potential performance degradation of the observability pipeline. The issue is present in the core CubeAPM platform and is not limited to specific deployment configurations.
Multiple OS command injection vulnerabilities exist in the formPingCmd functionality of Planet WGR-500 v1.3411b190912. A specially crafted series of HTTP requests can lead to arbitrary command execution. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This command injection is related to the `counts` request parameter.
Multiple OS command injection vulnerabilities exist in the formPingCmd functionality of Planet WGR-500 v1.3411b190912. A specially crafted series of HTTP requests can lead to arbitrary command execution. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This command injection is related to the `ipaddr` request parameter.
Multiple OS command injection vulnerabilities exist in the swctrl functionality of Planet WGR-500 v1.3411b190912. A specially crafted network request can lead to arbitrary command execution. An attacker can send a network request to trigger these vulnerabilities.This command injection is related to the `new_device_name` request parameter.
Multiple OS command injection vulnerabilities exist in the swctrl functionality of Planet WGR-500 v1.3411b190912. A specially crafted network request can lead to arbitrary command execution. An attacker can send a network request to trigger these vulnerabilities.This command injection is related to the `new_password` request parameter.
Multiple stack-based buffer overflow vulnerabilities exist in the formPingCmd functionality of Planet WGR-500 v1.3411b190912. A specially crafted series of HTTP requests can lead to stack-based buffer overflow. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This buffer overflow is related to the `submit-url` and `ipaddr` request parameters combined.
Multiple stack-based buffer overflow vulnerabilities exist in the formPingCmd functionality of Planet WGR-500 v1.3411b190912. A specially crafted series of HTTP requests can lead to stack-based buffer overflow. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This buffer overflow is related to the `submit-url` request parameter.
Multiple stack-based buffer overflow vulnerabilities exist in the formPingCmd functionality of Planet WGR-500 v1.3411b190912. A specially crafted series of HTTP requests can lead to stack-based buffer overflow. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This buffer overflow is related to the `counts` request parameter for composing the `"ping -c <counts> <ipaddr> 2>&1 > %s &"` string.
Multiple stack-based buffer overflow vulnerabilities exist in the formPingCmd functionality of Planet WGR-500 v1.3411b190912. A specially crafted series of HTTP requests can lead to stack-based buffer overflow. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This buffer overflow is related to the `ipaddr` request parameter for composing the `"ping -c <counts> <ipaddr> 2>&1 > %s &"` string.
A denial of service vulnerability exists in the ModbusTCP server functionality of OpenPLC _v3 a931181e8b81e36fadf7b74d5cba99b73c3f6d58. A specially crafted series of network connections can lead to the server not processing subsequent Modbus requests. An attacker can open a series of TCP connections to trigger this vulnerability.
Clash Verge Rev thru 2.2.3 forces the installation of system services(clash-verge-service) by default and exposes key functions through the unauthorized HTTP API `/start_clash`, allowing local users to submit arbitrary bin_path parameters and pass them directly to the service process for execution, resulting in local privilege escalation.
A format string vulnerability exists in the formPingCmd functionality of Planet WGR-500 v1.3411b190912. A specially crafted series of HTTP requests can lead to memory corruption. An attacker can send a series of HTTP requests to trigger this vulnerability.
Insufficiently Protected Credentials in the Crowdstrike connector can lead to Crowdstrike credentials being leaked. A malicious user can access cached credentials from a Crowdstrike connector in another space by creating and running a Crowdstrike connector in a space to which they have access.
A security flaw has been discovered in SourceCodester Hotel and Lodge Management System 1.0. The affected element is an unknown function of the file /login.php. Performing manipulation of the argument email results in sql injection. The attack may be initiated remotely. The exploit has been released to the public and may be exploited.
A path traversal vulnerability was discovered in the Time Machine functionality due to missing validation of two input parameters. An authenticated user with limited privileges, by issuing a specifically-crafted request, can potentially alter the structure and content of files in the /data folder, and/or affect their availability.
A SQL Injection vulnerability was discovered in the CLI functionality due to improper validation of an input parameter. An authenticated user with limited privileges can execute arbitrary SELECT SQL statements on the DBMS used by the web application, potentially exposing unauthorized data.
A SQL Injection vulnerability was discovered in the Alert functionality due to improper validation of an input parameter. An authenticated user with limited privileges can execute arbitrary SELECT SQL statements on the DBMS used by the web application, potentially exposing unauthorized data.
A SQL Injection vulnerability was discovered in the Alert functionality due to improper validation of an input parameter. An authenticated user with limited privileges can execute arbitrary SQL statements on the DBMS used by the web application, potentially exposing unauthorized data, altering their structure and content, and/or affecting their availability.
A SQL Injection vulnerability was discovered in the Smart Polling functionality due to improper validation of an input parameter. An authenticated user with limited privileges can execute arbitrary SELECT SQL statements on the DBMS used by the web application, potentially exposing unauthorized data.
Insecure Direct Object Reference (IDOR) in Negotiator v3.15.2 from Biobanking and Biomolecular Resources - European Research Infrastructure (BBMRI-ERIC). This vulnerability allows an attacker to access or modify unauthorised resources by manipulating requests that use the 'userID' parameter in '/api/v3/users/<userID>', which may result in the exposure or alteration of sensitive data
Stored Cross-Site Scripting (XSS) in Biobanking and Biomolecular Resources Negotiator v3.15.2 - European Research Infrastructure (BBMRI-ERIC), consisting of a stored XSS due to a lack of proper validation of user input by sending a POST request using parameter text in '/api/v3/negotiations/<postUID>/posts'. This vulnerability could allow a remote user to send a specially crafted query to an authenticated user and steal their cookie session details.
An access control vulnerability was discovered in the CLI functionality due to a specific access restriction not being properly enforced for users with limited privileges. An authenticated user with limited privileges can issue administrative CLI commands, altering the device configuration, and/or affecting its availability.
A client-side path traversal vulnerability was discovered in the web management interface front-end due to missing validation of an input parameter. An authenticated user with limited privileges can craft a malicious URL which, if visited by an authenticated victim, leads to a Cross-Site Scripting (XSS) attack.
A vulnerability was identified in code-projects Simple Food Ordering System 1.0. Impacted is an unknown function of the file /product.php. Such manipulation of the argument Category leads to sql injection. The attack can be launched remotely. The exploit is publicly available and might be used.
A weakness has been identified in PHPGurukul Cyber Cafe Management System 1.0. Affected by this vulnerability is an unknown functionality of the file /search.php of the component POST Parameter Handler. Executing manipulation of the argument searchdata can lead to cross site scripting. The attack can be executed remotely. The exploit has been made available to the public and could be exploited.
A security flaw has been discovered in Tenda AC15 15.03.05.18. Affected is an unknown function of the file /goform/saveAutoQos. Performing manipulation of the argument enable results in stack-based buffer overflow. Remote exploitation of the attack is possible. The exploit has been released to the public and may be exploited.
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in Callvision Healthcare Callvision Emergency Code allows SQL Injection, Blind SQL Injection.This issue affects Callvision Emergency Code: before V3.0.
A vulnerability was identified in Tenda AC15 15.03.05.18. This impacts an unknown function of the file /goform/setNotUpgrade. Such manipulation of the argument newVersion leads to stack-based buffer overflow. The attack may be launched remotely. The exploit is publicly available and might be used.
A vulnerability was determined in Tenda AC15 15.03.05.18. This affects an unknown function of the file /goform/fast_setting_pppoe_set. This manipulation of the argument Password causes stack-based buffer overflow. The attack may be initiated remotely. The exploit has been publicly disclosed and may be utilized.
A vulnerability was found in Tenda AC15 15.03.05.18. The impacted element is an unknown function of the file /goform/SetDDNSCfg of the component POST Parameter Handler. The manipulation of the argument ddnsEn results in stack-based buffer overflow. The attack can be launched remotely. The exploit has been made public and could be used.
A vulnerability has been found in Tenda AC20 up to 16.03.08.12. The affected element is the function sscanf of the file /goform/fast_setting_wifi_set. The manipulation of the argument timeZone leads to buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was detected in jakowenko double-take up to 1.13.1. The impacted element is the function app.use of the file api/src/app.js of the component API. The manipulation of the argument X-Ingress-Path results in cross site scripting. The attack can be executed remotely. Upgrading to version 1.13.2 is sufficient to resolve this issue. The patch is identified as e11de9dd6b4ea6b7ec9a5607a920d48961e9fa50. The affected component should be upgraded.
A security vulnerability has been detected in code-projects Simple Banking System 1.0. The affected element is an unknown function of the file /transfermoney.php. The manipulation of the argument ID leads to sql injection. Remote exploitation of the attack is possible. The exploit has been disclosed publicly and may be used.
The WP Reset plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 2.05 via the WF_Licensing::log() method when debugging is enabled (default). This makes it possible for unauthenticated attackers to extract sensitive license key and site data.