An issue was discovered in Django 4.2 before 4.2.25, 5.1 before 5.1.13, and 5.2 before 5.2.7. QuerySet.annotate(), QuerySet.alias(), QuerySet.aggregate(), and QuerySet.extra() are subject to SQL injection in column aliases, when using a suitably crafted dictionary, with dictionary expansion, as the **kwargs passed to these methods (on MySQL and MariaDB).
Discourse is an open-source community discussion platform. In versions 3.5.0 and below, the Discourse AI suggestion endpoints for topic “Title”, “Category”, and “Tags” allowed authenticated users to extract information about topics that they weren’t authorized to access. By modifying the “topic_id” value in API requests to the AI suggestion endpoints, users could target specific restricted topics. The AI model’s responses then disclosed information that the authenticated user couldn’t normally access. This issue is fixed in version 3.5.1. To workaround this issue, users can restrict group access to the AI helper feature through the "composer_ai_helper_allowed_groups" and "post_ai_helper_allowed_groups" site settings.
Discourse is an open-source community discussion platform. Versions 3.5.0 and below are vulnerable to XSS attacks through parsing and rendering of chat channel titles and chat thread titles via the quote message functionality when using the rich text editor. This issue is fixed in version 3.5.1.
A heap-use-after free in the PdfTokenizer::ReadDictionary function of podofo v0.10.0 to v0.10.5 allows attackers to cause a Denial of Service (DoS) by supplying a crafted PDF file. NOTE: this is disputed by the Supplier because there is no available file to reproduce the issue.
Poppler 24.06.1 through 25.x before 25.04.0 allows stack consumption and a SIGSEGV via deeply nested structures within the metadata (such as GTS_PDFEVersion) of a PDF document, e.g., a regular expression for a long pdfsubver string. This occurs in Dict::lookup, Catalog::getMetadata, and associated functions in PDFDoc, with deep recursion in the regex executor (std::__detail::_Executor).
A potential security vulnerability has been identified in the HP Support Assistant for versions prior to 9.47.41.0. The vulnerability could potentially allow a local attacker to escalate privileges via an arbitrary file write.
In ExtremeGuest Essentials before 25.5.0, captive-portal may permit unauthorized access via manual brute-force procedure. Under certain ExtremeGuest Essentials captive-portal SSID configurations, repeated manual login attempts may allow an unauthenticated device to be marked as authenticated and obtain network access. Client360 logs may display the client MAC as the username despite no MAC-authentication being enabled.
A reflected cross-site scripted (XSS) vulnerability in Codazon Magento Themes v1.1.0.0 to v2.4.7 allows attackers to execute arbitrary Javascript in the context of a user's browser via a crafted payload injected into the cat parameter.
A stored cross-site scripting (XSS) in Kissflow Work Platform Kissflow Application Versions 7337 Account v2.0 to v4.2vallows attackers to execute arbitrary web scripts or HTML via injecting a crafted payload.
Cross Site Scripting vulnerability in Neto E-Commerce CMS v.6.313.0 through v.6.3115 allows a remote attacker to escalate privileges via the kw parameter.
In Deciso OPNsense before 25.7.4, when creating an "Interfaces: Devices: Point-to-Point" entry, the value of the parameter ptpid is not sanitized of HTML-related characters/strings. This value is directly displayed when visiting the page/interfaces_assign.php, which can result in stored cross-site scripting. The attacker must be authenticated with at-least "Interfaces: PPPs: Edit" permission. This vulnerability has been addressed by the vendor in the product release notes as "ui: legacy_html_escape_form_data() was not escaping keys only data elements."
In Splunk Enterprise versions below 10.0.1, 9.4.4, 9.3.6 and 9.2.8, and Splunk Cloud Platform versions below 9.3.2411.109, 9.3.2408.119 and 9.2.2406.122, an unauthenticated attacker could trigger a blind server-side request forgery (SSRF) potentially letting an attacker perform REST API calls on behalf of an authenticated high-privileged user.
In Splunk Enterprise versions below 10.0.1, 9.4.4, 9.3.6, and 9.2.8, and Splunk Cloud Platform versions below 9.3.2411.108, 9.3.2408.118 and 9.2.2406.123, a user who holds a role that contains the high-privilege capability `change_authentication`, could send multiple LDAP bind requests to a specific internal endpoint, resulting in high server CPU usage, which could potentially lead to a denial of service (DoS) until the Splunk Enterprise instance is restarted. See https://help.splunk.com/en/splunk-enterprise/administer/manage-users-and-security/10.0/manage-splunk-platform-users-and-roles/define-roles-on-the-splunk-platform-with-capabilities and https://help.splunk.com/en/splunk-enterprise/administer/manage-users-and-security/10.0/use-ldap-as-an-authentication-scheme/configure-ldap-with-splunk-web#cfe47e31_007f_460d_8b3d_8505ffc3f0dd__Configure_LDAP_with_Splunk_Web for more information.
In Splunk Enterprise versions below 9.4.4, 9.3.6, and 9.2.8, and Splunk Cloud Platform versions below 9.3.2411.108, 9.3.2408.118 and 9.2.2406.123, a low privilege user that does not hold the "admin" or "power" Splunk roles could perform an extensible markup language (XML) external entity (XXE) injection through the dashboard tab label field. The XXE injection has the potential to cause denial of service (DoS) attacks.
In Splunk Enterprise versions below 9.4.4, 9.3.6, and 9.2.8, and Splunk Cloud Platform versions below 9.3.2411.108, 9.3.2408.118 and 9.2.2406.123, a low privileged user that does not hold the admin or power Splunk roles could craft a malicious payload through the error messages and job inspection details of a saved search. This could result in execution of unauthorized JavaScript code in the browser of a user.
In Splunk Enterprise versions below 9.4.4, 9.3.6 and 9.2.8, and Splunk Cloud Platform versions below 9.3.2411.109, 9.3.2408.119 and 9.2.2406.122, a low-privileged user that does not hold the 'admin' or 'power' Splunk roles could craft a malicious payload through the `dataset.command` parameter of the `/app/search/table` endpoint, which could result in execution of unauthorized JavaScript code in the browser of a user.
In Splunk Enterprise versions below 9.4.4, 9.3.6, and 9.2.8, and Splunk Cloud Platform versions below 9.3.2411.111, 9.3.2408.119, and 9.2.2406.122, a low-privileged user that does not hold the admin or power Splunk roles could access sensitive search results if Splunk Enterprise runs an administrative search job in the background. If the low privileged user guesses the search job’s unique Search ID (SID), the user could retrieve the results of that job, potentially exposing sensitive search results. For more information see https://help.splunk.com/en/splunk-enterprise/search/search-manual/10.0/manage-jobs/about-jobs-and-job-management and https://help.splunk.com/en/splunk-enterprise/search/search-manual/10.0/manage-jobs/manage-search-jobs.
A vulnerability in the web-based management interface of Cisco Unified Communications Manager (Unified CM) and Cisco Unified Communications Manager Session Management Edition (Unified CM SME) could allow an authenticated, remote attacker to conduct a cross-site scripting (XSS) attack against a user of the interface.
This vulnerability exists because the web-based management interface does not properly validate user-supplied input. An attacker could exploit this vulnerability by injecting malicious code into specific pages of the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit this vulnerability, the attacker must have valid administrative credentials.
A vulnerability in the web-based management interface of Cisco Cyber Vision Center could allow an authenticated, remote attacker to conduct cross-site scripting (XSS) attacks against a user of the interface.
This vulnerability is due to insufficient validation of user-supplied input by the web-based management interface of an affected system. An attacker could exploit this vulnerability by injecting malicious code into specific pages of the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information.
To exploit this vulnerability, the attacker must have valid administrative credentials that allow access to the Reports page. By default, all pre-defined users have this access, as do any custom users that are configured to allow access to the Reports page.
A vulnerability in the web-based management interface of Cisco Cyber Vision Center could allow an authenticated, remote attacker to conduct cross-site scripting (XSS) attacks against a user of the interface.
This vulnerability is due to insufficient validation of user-supplied input by the web-based management interface of an affected system. An attacker could exploit this vulnerability by injecting malicious code into specific pages of the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information.
To exploit this vulnerability, the attacker must have valid administrative credentials that allow access to the Sensor Explorer page. By default, Admin and Product user roles have this access, as do any custom users that are configued to allow access to the Sensors page.
Starting from Rust 1.87.0 and before Rust 1.89.0, the tier 3 Cygwin target (`x86_64-pc-cygwin`) didn't correctly handle path separators, causing the standard library's Path API to ignore path components separated by backslashes. Due to this, programs compiled for Cygwin that validate paths could misbehave, potentially allowing path traversal attacks or malicious filesystem operations.
Rust 1.89.0 fixes the issue by handling both Win32 and Unix style paths in the standard library for the Cygwin target.
While we assess the severity of this vulnerability as "medium", please note that the tier 3 Cygwin compilation target is only available when building it from source: no pre-built binaries are distributed by the Rust project, and it cannot be installed through Rustup. Unless you manually compiled the `x86_64-pc-cygwin` target you are not affected by this vulnerability. Users of the tier 1 MinGW target (`x86_64-pc-windows-gnu`) are also explicitly not affected.
IBM Transformation Extender Advanced 10.0.1
does not require that users should have strong passwords by default, which makes it easier for attackers to compromise user accounts.
IBM Transformation Extender Advanced 10.0.1
does not invalidate session after logout which could allow an authenticated user to impersonate another user on the system.
File upload vulnerability in Fiora chat application 1.0.0 through user avatar upload functionality. The application fails to validate SVG file content, allowing malicious SVG files with embedded foreignObject elements containing iframe tags and JavaScript event handlers (onmouseover) to be uploaded and stored. When rendered, these SVG files execute arbitrary JavaScript, enabling attackers to steal user sessions, cookies, and perform unauthorized actions in the context of users viewing affected profiles.
Cross Site Scripting (XSS) vulnerability in Fiora chat application 1.0.0 allows executes arbitrary JavaScript when malicious SVG files are rendered by other users.
TOTOLINK X18 V9.1.0cu.2053_B20230309 was discovered to contain a command injection vulnerability via the mac parameter in the setEasyMeshAgentCfg function.
TOTOLINK X18 V9.1.0cu.2053_B20230309 was discovered to contain a command injection vulnerability via the agentName parameter in the setEasyMeshAgentCfg function.
IMPAQTR Aurora before 1.36 allows Insecure Direct Object Reference attacks against the users list, organization details, bookmarks, and notifications of an arbitrary organization.
In Frappe ERPNext 15.57.5, the function get_rfq_containing_supplier() at erpnext/buying/doctype/request_for_quotation/request_for_quotation.py is vulnerable to SQL Injection, which allows an attacker to extract all information from databases by injecting SQL query via the txt parameter.
In Frappe ERPNext 15.57.5, the function get_stock_balance_for() at erpnext/stock/doctype/stock_reconciliation/stock_reconciliation.py is vulnerable to SQL Injection, which allows an attacker to extract all information from databases by injecting a SQL query into the inventory_dimensions_dict parameter.
In Frappe ERPNext 15.57.5, the function get_blanket_orders() at erpnext/controllers/queries.py is vulnerable to SQL Injection, which allows an attacker can extract all information from databases by injecting a SQL query into the blanket_order_type parameter.
In Frappe ERPNext 15.57.5, the function get_material_requests_based_on_supplier() at erpnext/stock/doctype/material_request/material_request.py is vulnerable to SQL Injection, which allows an attacker to extract all information from databases by injecting a SQL query into the txt parameter.
Improper handling of symbolic links in the TeamViewer Full Client and Host for Windows — in versions prior to 15.70 of TeamViewer Remote and Tensor — allows an attacker with local, unprivileged access to a device lacking adequate malware protection to escalate privileges by spoofing the update file path. This may result in unauthorized access to sensitive information.
Stored Cross-Site Scripting (XSS) vulnerability in Issabel v5.0.0, consisting of a stored XSS due to a lack of proper validation of user input, through the 'numero_conferencia' parameter in '/index.php?menu=conferencia'.
Stored Cross-Site Scripting (XSS) vulnerability in Issabel v5.0.0, consisting of a stored XSS due to a lack of proper validation of user input, through the 'email' parameter in '/index.php?menu=address_book'.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix deinitialization of firmware resources
Currently, in ath11k_ahb_fw_resources_init(), iommu domain
mapping is done only for the chipsets having fixed firmware
memory. Also, for such chipsets, mapping is done only if it
does not have TrustZone support.
During deinitialization, only if TrustZone support is not there,
iommu is unmapped back. However, for non fixed firmware memory
chipsets, TrustZone support is not there and this makes the
condition check to true and it tries to unmap the memory which
was not mapped during initialization.
This leads to the following trace -
[ 83.198790] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
[ 83.259537] Modules linked in: ath11k_ahb ath11k qmi_helpers
.. snip ..
[ 83.280286] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 83.287228] pc : __iommu_unmap+0x30/0x140
[ 83.293907] lr : iommu_unmap+0x5c/0xa4
[ 83.298072] sp : ffff80000b3abad0
.. snip ..
[ 83.369175] Call trace:
[ 83.376282] __iommu_unmap+0x30/0x140
[ 83.378541] iommu_unmap+0x5c/0xa4
[ 83.382360] ath11k_ahb_fw_resource_deinit.part.12+0x2c/0xac [ath11k_ahb]
[ 83.385666] ath11k_ahb_free_resources+0x140/0x17c [ath11k_ahb]
[ 83.392521] ath11k_ahb_shutdown+0x34/0x40 [ath11k_ahb]
[ 83.398248] platform_shutdown+0x20/0x2c
[ 83.403455] device_shutdown+0x16c/0x1c4
[ 83.407621] kernel_restart_prepare+0x34/0x3c
[ 83.411529] kernel_restart+0x14/0x74
[ 83.415781] __do_sys_reboot+0x1c4/0x22c
[ 83.419427] __arm64_sys_reboot+0x1c/0x24
[ 83.423420] invoke_syscall+0x44/0xfc
[ 83.427326] el0_svc_common.constprop.3+0xac/0xe8
[ 83.430974] do_el0_svc+0xa0/0xa8
[ 83.435659] el0_svc+0x1c/0x44
[ 83.438957] el0t_64_sync_handler+0x60/0x144
[ 83.441910] el0t_64_sync+0x15c/0x160
[ 83.446343] Code: aa0103f4 f9400001 f90027a1 d2800001 (f94006a0)
[ 83.449903] ---[ end trace 0000000000000000 ]---
This can be reproduced by probing an AHB chipset which is not
having a fixed memory region. During reboot (or rmmod) trace
can be seen.
Fix this issue by adding a condition check on firmware fixed memory
hw_param as done in the counter initialization function.
Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1
In the Linux kernel, the following vulnerability has been resolved:
null_blk: fix poll request timeout handling
When doing io_uring benchmark on /dev/nullb0, it's easy to crash the
kernel if poll requests timeout triggered, as reported by David. [1]
BUG: kernel NULL pointer dereference, address: 0000000000000008
Workqueue: kblockd blk_mq_timeout_work
RIP: 0010:null_timeout_rq+0x4e/0x91
Call Trace:
? null_timeout_rq+0x4e/0x91
blk_mq_handle_expired+0x31/0x4b
bt_iter+0x68/0x84
? bt_tags_iter+0x81/0x81
__sbitmap_for_each_set.constprop.0+0xb0/0xf2
? __blk_mq_complete_request_remote+0xf/0xf
bt_for_each+0x46/0x64
? __blk_mq_complete_request_remote+0xf/0xf
? percpu_ref_get_many+0xc/0x2a
blk_mq_queue_tag_busy_iter+0x14d/0x18e
blk_mq_timeout_work+0x95/0x127
process_one_work+0x185/0x263
worker_thread+0x1b5/0x227
This is indeed a race problem between null_timeout_rq() and null_poll().
null_poll() null_timeout_rq()
spin_lock(&nq->poll_lock)
list_splice_init(&nq->poll_list, &list)
spin_unlock(&nq->poll_lock)
while (!list_empty(&list))
req = list_first_entry()
list_del_init()
...
blk_mq_add_to_batch()
// req->rq_next = NULL
spin_lock(&nq->poll_lock)
// rq->queuelist->next == NULL
list_del_init(&rq->queuelist)
spin_unlock(&nq->poll_lock)
Fix these problems by setting requests state to MQ_RQ_COMPLETE under
nq->poll_lock protection, in which null_timeout_rq() can safely detect
this race and early return.
Note this patch just fix the kernel panic when request timeout happen.
[1] https://lore.kernel.org/all/3893581.1691785261@warthog.procyon.org.uk/
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Use raw_smp_processor_id() instead of smp_processor_id()
The following call trace was observed:
localhost kernel: nvme nvme0: NVME-FC{0}: controller connect complete
localhost kernel: BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u129:4/75092
localhost kernel: nvme nvme0: NVME-FC{0}: new ctrl: NQN "nqn.1992-08.com.netapp:sn.b42d198afb4d11ecad6d00a098d6abfa:subsystem.PR_Channel2022_RH84_subsystem_291"
localhost kernel: caller is qla_nvme_post_cmd+0x216/0x1380 [qla2xxx]
localhost kernel: CPU: 6 PID: 75092 Comm: kworker/u129:4 Kdump: loaded Tainted: G B W OE --------- --- 5.14.0-70.22.1.el9_0.x86_64+debug #1
localhost kernel: Hardware name: HPE ProLiant XL420 Gen10/ProLiant XL420 Gen10, BIOS U39 01/13/2022
localhost kernel: Workqueue: nvme-wq nvme_async_event_work [nvme_core]
localhost kernel: Call Trace:
localhost kernel: dump_stack_lvl+0x57/0x7d
localhost kernel: check_preemption_disabled+0xc8/0xd0
localhost kernel: qla_nvme_post_cmd+0x216/0x1380 [qla2xxx]
Use raw_smp_processor_id() instead of smp_processor_id().
Also use queue_work() across the driver instead of queue_work_on() thus
avoiding usage of smp_processor_id() when CONFIG_DEBUG_PREEMPT is enabled.
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: Fix memory leak in rtw88_usb
Kmemleak shows the following leak arising from routine in the usb
probe routine:
unreferenced object 0xffff895cb29bba00 (size 512):
comm "(udev-worker)", pid 534, jiffies 4294903932 (age 102751.088s)
hex dump (first 32 bytes):
77 30 30 30 00 00 00 00 02 2f 2d 2b 30 00 00 00 w000...../-+0...
02 00 2a 28 00 00 00 00 ff 55 ff ff ff 00 00 00 ..*(.....U......
backtrace:
[<ffffffff9265fa36>] kmalloc_trace+0x26/0x90
[<ffffffffc17eec41>] rtw_usb_probe+0x2f1/0x680 [rtw_usb]
[<ffffffffc03e19fd>] usb_probe_interface+0xdd/0x2e0 [usbcore]
[<ffffffff92b4f2fe>] really_probe+0x18e/0x3d0
[<ffffffff92b4f5b8>] __driver_probe_device+0x78/0x160
[<ffffffff92b4f6bf>] driver_probe_device+0x1f/0x90
[<ffffffff92b4f8df>] __driver_attach+0xbf/0x1b0
[<ffffffff92b4d350>] bus_for_each_dev+0x70/0xc0
[<ffffffff92b4e51e>] bus_add_driver+0x10e/0x210
[<ffffffff92b50935>] driver_register+0x55/0xf0
[<ffffffffc03e0708>] usb_register_driver+0x88/0x140 [usbcore]
[<ffffffff92401153>] do_one_initcall+0x43/0x210
[<ffffffff9254f42a>] do_init_module+0x4a/0x200
[<ffffffff92551d1c>] __do_sys_finit_module+0xac/0x120
[<ffffffff92ee6626>] do_syscall_64+0x56/0x80
[<ffffffff9300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
The leak was verified to be real by unloading the driver, which resulted
in a dangling pointer to the allocation.
The allocated memory is freed in rtw_usb_intf_deinit().
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix unsafe drain work queue code
If create_qp does not fully succeed it is possible for qp cleanup
code to attempt to drain the send or recv work queues before the
queues have been created causing a seg fault. This patch checks
to see if the queues exist before attempting to drain them.
In the Linux kernel, the following vulnerability has been resolved:
thunderbolt: Fix memory leak in tb_handle_dp_bandwidth_request()
The memory allocated in tb_queue_dp_bandwidth_request() needs to be
released once the request is handled to avoid leaking it.
In the Linux kernel, the following vulnerability has been resolved:
jbd2: check 'jh->b_transaction' before removing it from checkpoint
Following process will corrupt ext4 image:
Step 1:
jbd2_journal_commit_transaction
__jbd2_journal_insert_checkpoint(jh, commit_transaction)
// Put jh into trans1->t_checkpoint_list
journal->j_checkpoint_transactions = commit_transaction
// Put trans1 into journal->j_checkpoint_transactions
Step 2:
do_get_write_access
test_clear_buffer_dirty(bh) // clear buffer dirty,set jbd dirty
__jbd2_journal_file_buffer(jh, transaction) // jh belongs to trans2
Step 3:
drop_cache
journal_shrink_one_cp_list
jbd2_journal_try_remove_checkpoint
if (!trylock_buffer(bh)) // lock bh, true
if (buffer_dirty(bh)) // buffer is not dirty
__jbd2_journal_remove_checkpoint(jh)
// remove jh from trans1->t_checkpoint_list
Step 4:
jbd2_log_do_checkpoint
trans1 = journal->j_checkpoint_transactions
// jh is not in trans1->t_checkpoint_list
jbd2_cleanup_journal_tail(journal) // trans1 is done
Step 5: Power cut, trans2 is not committed, jh is lost in next mounting.
Fix it by checking 'jh->b_transaction' before remove it from checkpoint.