In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: tegra: fix sleep in atomic call
When we set the dual-role port to Host mode, we observed the following
splat:
[ 167.057718] BUG: sleeping function called from invalid context at
include/linux/sched/mm.h:229
[ 167.057872] Workqueue: events tegra_xusb_usb_phy_work
[ 167.057954] Call trace:
[ 167.057962] dump_backtrace+0x0/0x210
[ 167.057996] show_stack+0x30/0x50
[ 167.058020] dump_stack_lvl+0x64/0x84
[ 167.058065] dump_stack+0x14/0x34
[ 167.058100] __might_resched+0x144/0x180
[ 167.058140] __might_sleep+0x64/0xd0
[ 167.058171] slab_pre_alloc_hook.constprop.0+0xa8/0x110
[ 167.058202] __kmalloc_track_caller+0x74/0x2b0
[ 167.058233] kvasprintf+0xa4/0x190
[ 167.058261] kasprintf+0x58/0x90
[ 167.058285] tegra_xusb_find_port_node.isra.0+0x58/0xd0
[ 167.058334] tegra_xusb_find_port+0x38/0xa0
[ 167.058380] tegra_xusb_padctl_get_usb3_companion+0x38/0xd0
[ 167.058430] tegra_xhci_id_notify+0x8c/0x1e0
[ 167.058473] notifier_call_chain+0x88/0x100
[ 167.058506] atomic_notifier_call_chain+0x44/0x70
[ 167.058537] tegra_xusb_usb_phy_work+0x60/0xd0
[ 167.058581] process_one_work+0x1dc/0x4c0
[ 167.058618] worker_thread+0x54/0x410
[ 167.058650] kthread+0x188/0x1b0
[ 167.058672] ret_from_fork+0x10/0x20
The function tegra_xusb_padctl_get_usb3_companion eventually calls
tegra_xusb_find_port and this in turn calls kasprintf which might sleep
and so cannot be called from an atomic context.
Fix this by moving the call to tegra_xusb_padctl_get_usb3_companion to
the tegra_xhci_id_work function where it is really needed.
In the Linux kernel, the following vulnerability has been resolved:
x86/MCE/AMD: Use an u64 for bank_map
Thee maximum number of MCA banks is 64 (MAX_NR_BANKS), see
a0bc32b3cacf ("x86/mce: Increase maximum number of banks to 64").
However, the bank_map which contains a bitfield of which banks to
initialize is of type unsigned int and that overflows when those bit
numbers are >= 32, leading to UBSAN complaining correctly:
UBSAN: shift-out-of-bounds in arch/x86/kernel/cpu/mce/amd.c:1365:38
shift exponent 32 is too large for 32-bit type 'int'
Change the bank_map to a u64 and use the proper BIT_ULL() macro when
modifying bits in there.
[ bp: Rewrite commit message. ]
In the Linux kernel, the following vulnerability has been resolved:
ext4: improve error handling from ext4_dirhash()
The ext4_dirhash() will *almost* never fail, especially when the hash
tree feature was first introduced. However, with the addition of
support of encrypted, casefolded file names, that function can most
certainly fail today.
So make sure the callers of ext4_dirhash() properly check for
failures, and reflect the errors back up to their callers.
In the Linux kernel, the following vulnerability has been resolved:
pwm: lpc32xx: Remove handling of PWM channels
Because LPC32xx PWM controllers have only a single output which is
registered as the only PWM device/channel per controller, it is known in
advance that pwm->hwpwm value is always 0. On basis of this fact
simplify the code by removing operations with pwm->hwpwm, there is no
controls which require channel number as input.
Even though I wasn't aware at the time when I forward ported that patch,
this fixes a null pointer dereference as lpc32xx->chip.pwms is NULL
before devm_pwmchip_add() is called.
In the Linux kernel, the following vulnerability has been resolved:
ionic: catch failure from devlink_alloc
Add a check for NULL on the alloc return. If devlink_alloc() fails and
we try to use devlink_priv() on the NULL return, the kernel gets very
unhappy and panics. With this fix, the driver load will still fail,
but at least it won't panic the kernel.
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix potential leak in rtw89_append_probe_req_ie()
Do `kfree_skb(new)` before `goto out` to prevent potential leak.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7915: fix memory leak in mt7915_mcu_exit
Always purge mcu skb queues in mt7915_mcu_exit routine even if
mt7915_firmware_state fails.
In the Linux kernel, the following vulnerability has been resolved:
soundwire: qcom: fix storing port config out-of-bounds
The 'qcom_swrm_ctrl->pconfig' has size of QCOM_SDW_MAX_PORTS (14),
however we index it starting from 1, not 0, to match real port numbers.
This can lead to writing port config past 'pconfig' bounds and
overwriting next member of 'qcom_swrm_ctrl' struct. Reported also by
smatch:
drivers/soundwire/qcom.c:1269 qcom_swrm_get_port_config() error: buffer overflow 'ctrl->pconfig' 14 <= 14
In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Check that sock is valid before iscsi_set_param()
The validity of sock should be checked before assignment to avoid incorrect
values. Commit 57569c37f0ad ("scsi: iscsi: iscsi_tcp: Fix null-ptr-deref
while calling getpeername()") introduced this change which may lead to
inconsistent values of tcp_sw_conn->sendpage and conn->datadgst_en.
Fix the issue by moving the position of the assignment.
In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Do not reset dql stats on NON_FATAL err
All ibmvnic resets, make a call to netdev_tx_reset_queue() when
re-opening the device. netdev_tx_reset_queue() resets the num_queued
and num_completed byte counters. These stats are used in Byte Queue
Limit (BQL) algorithms. The difference between these two stats tracks
the number of bytes currently sitting on the physical NIC. ibmvnic
increases the number of queued bytes though calls to
netdev_tx_sent_queue() in the drivers xmit function. When, VIOS reports
that it is done transmitting bytes, the ibmvnic device increases the
number of completed bytes through calls to netdev_tx_completed_queue().
It is important to note that the driver batches its transmit calls and
num_queued is increased every time that an skb is added to the next
batch, not necessarily when the batch is sent to VIOS for transmission.
Unlike other reset types, a NON FATAL reset will not flush the sub crq
tx buffers. Therefore, it is possible for the batched skb array to be
partially full. So if there is call to netdev_tx_reset_queue() when
re-opening the device, the value of num_queued (0) would not account
for the skb's that are currently batched. Eventually, when the batch
is sent to VIOS, the call to netdev_tx_completed_queue() would increase
num_completed to a value greater than the num_queued. This causes a
BUG_ON crash:
ibmvnic 30000002: Firmware reports error, cause: adapter problem.
Starting recovery...
ibmvnic 30000002: tx error 600
ibmvnic 30000002: tx error 600
ibmvnic 30000002: tx error 600
ibmvnic 30000002: tx error 600
------------[ cut here ]------------
kernel BUG at lib/dynamic_queue_limits.c:27!
Oops: Exception in kernel mode, sig: 5
[....]
NIP dql_completed+0x28/0x1c0
LR ibmvnic_complete_tx.isra.0+0x23c/0x420 [ibmvnic]
Call Trace:
ibmvnic_complete_tx.isra.0+0x3f8/0x420 [ibmvnic] (unreliable)
ibmvnic_interrupt_tx+0x40/0x70 [ibmvnic]
__handle_irq_event_percpu+0x98/0x270
---[ end trace ]---
Therefore, do not reset the dql stats when performing a NON_FATAL reset.
In the Linux kernel, the following vulnerability has been resolved:
io_uring: wait interruptibly for request completions on exit
WHen the ring exits, cleanup is done and the final cancelation and
waiting on completions is done by io_ring_exit_work. That function is
invoked by kworker, which doesn't take any signals. Because of that, it
doesn't really matter if we wait for completions in TASK_INTERRUPTIBLE
or TASK_UNINTERRUPTIBLE state. However, it does matter to the hung task
detection checker!
Normally we expect cancelations and completions to happen rather
quickly. Some test cases, however, will exit the ring and park the
owning task stopped (eg via SIGSTOP). If the owning task needs to run
task_work to complete requests, then io_ring_exit_work won't make any
progress until the task is runnable again. Hence io_ring_exit_work can
trigger the hung task detection, which is particularly problematic if
panic-on-hung-task is enabled.
As the ring exit doesn't take signals to begin with, have it wait
interruptibly rather than uninterruptibly. io_uring has a separate
stuck-exit warning that triggers independently anyway, so we're not
really missing anything by making this switch.
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: fix memory leak in rtw_usb_probe()
drivers/net/wireless/realtek/rtw88/usb.c:876 rtw_usb_probe()
warn: 'hw' from ieee80211_alloc_hw() not released on lines: 811
Fix this by modifying return to a goto statement.
In the Linux kernel, the following vulnerability has been resolved:
HID: mcp-2221: prevent UAF in delayed work
If the device is plugged/unplugged without giving time for mcp_init_work()
to complete, we might kick in the devm free code path and thus have
unavailable struct mcp_2221 while in delayed work.
Canceling the delayed_work item is enough to solve the issue, because
cancel_delayed_work_sync will prevent the work item to requeue itself.
In the Linux kernel, the following vulnerability has been resolved:
media: cx23885: Fix a null-ptr-deref bug in buffer_prepare() and buffer_finish()
When the driver calls cx23885_risc_buffer() to prepare the buffer, the
function call dma_alloc_coherent may fail, resulting in a empty buffer
risc->cpu. Later when we free the buffer or access the buffer, null ptr
deref is triggered.
This bug is similar to the following one:
https://git.linuxtv.org/media_stage.git/commit/?id=2b064d91440b33fba5b452f2d1b31f13ae911d71.
We believe the bug can be also dynamically triggered from user side.
Similarly, we fix this by checking the return value of cx23885_risc_buffer()
and the value of risc->cpu before buffer free.
In the Linux kernel, the following vulnerability has been resolved:
FS: JFS: Fix null-ptr-deref Read in txBegin
Syzkaller reported an issue where txBegin may be called
on a superblock in a read-only mounted filesystem which leads
to NULL pointer deref. This could be solved by checking if
the filesystem is read-only before calling txBegin, and returning
with appropiate error code.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla4xxx: Add length check when parsing nlattrs
There are three places that qla4xxx parses nlattrs:
- qla4xxx_set_chap_entry()
- qla4xxx_iface_set_param()
- qla4xxx_sysfs_ddb_set_param()
and each of them directly converts the nlattr to specific pointer of
structure without length checking. This could be dangerous as those
attributes are not validated and a malformed nlattr (e.g., length 0) could
result in an OOB read that leaks heap dirty data.
Add the nla_len check before accessing the nlattr data and return EINVAL if
the length check fails.
In the Linux kernel, the following vulnerability has been resolved:
HID: multitouch: Correct devm device reference for hidinput input_dev name
Reference the HID device rather than the input device for the devm
allocation of the input_dev name. Referencing the input_dev would lead to a
use-after-free when the input_dev was unregistered and subsequently fires a
uevent that depends on the name. At the point of firing the uevent, the
name would be freed by devres management.
Use devm_kasprintf to simplify the logic for allocating memory and
formatting the input_dev name string.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix potential NULL pointer dereference
Klocwork tool reported 'cur_dsd' may be dereferenced. Add fix to validate
pointer before dereferencing the pointer.
In the Linux kernel, the following vulnerability has been resolved:
ext4: remove a BUG_ON in ext4_mb_release_group_pa()
If a malicious fuzzer overwrites the ext4 superblock while it is
mounted such that the s_first_data_block is set to a very large
number, the calculation of the block group can underflow, and trigger
a BUG_ON check. Change this to be an ext4_warning so that we don't
crash the kernel.
In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: Fix potential memleak in dasd_eckd_init()
`dasd_reserve_req` is allocated before `dasd_vol_info_req`, and it
also needs to be freed before the error returns, just like the other
cases in this function.
In the Linux kernel, the following vulnerability has been resolved:
fbdev: imxfb: Removed unneeded release_mem_region
Remove unnecessary release_mem_region from the error path to prevent
mem region from being released twice, which could avoid resource leak
or other unexpected issues.
In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix potential memory leak in rtw_init_drv_sw()
In rtw_init_drv_sw(), there are various init functions are called to
populate the padapter structure and some checks for their return value.
However, except for the first one error path, the other five error paths
do not properly release the previous allocated resources, which leads to
various memory leaks.
This patch fixes them and keeps the success and error separate.
Note that these changes keep the form of `rtw_init_drv_sw()` in
"drivers/staging/r8188eu/os_dep/os_intfs.c". As there is no proper device
to test with, no runtime testing was performed.
In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_usbpd_notify: Fix error handling in cros_usbpd_notify_init()
The following WARNING message was given when rmmod cros_usbpd_notify:
Unexpected driver unregister!
WARNING: CPU: 0 PID: 253 at drivers/base/driver.c:270 driver_unregister+0x8a/0xb0
Modules linked in: cros_usbpd_notify(-)
CPU: 0 PID: 253 Comm: rmmod Not tainted 6.1.0-rc3 #24
...
Call Trace:
<TASK>
cros_usbpd_notify_exit+0x11/0x1e [cros_usbpd_notify]
__x64_sys_delete_module+0x3c7/0x570
? __ia32_sys_delete_module+0x570/0x570
? lock_is_held_type+0xe3/0x140
? syscall_enter_from_user_mode+0x17/0x50
? rcu_read_lock_sched_held+0xa0/0xd0
? syscall_enter_from_user_mode+0x1c/0x50
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f333fe9b1b7
The reason is that the cros_usbpd_notify_init() does not check the return
value of platform_driver_register(), and the cros_usbpd_notify can
install successfully even if platform_driver_register() failed.
Fix by checking the return value of platform_driver_register() and
unregister cros_usbpd_notify_plat_driver when it failed.
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix null ndlp ptr dereference in abnormal exit path for GFT_ID
An error case exit from lpfc_cmpl_ct_cmd_gft_id() results in a call to
lpfc_nlp_put() with a null pointer to a nodelist structure.
Changed lpfc_cmpl_ct_cmd_gft_id() to initialize nodelist pointer upon
entry.
In the Linux kernel, the following vulnerability has been resolved:
fs/binfmt_elf: Fix memory leak in load_elf_binary()
There is a memory leak reported by kmemleak:
unreferenced object 0xffff88817104ef80 (size 224):
comm "xfs_admin", pid 47165, jiffies 4298708825 (age 1333.476s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
60 a8 b3 00 81 88 ff ff a8 10 5a 00 81 88 ff ff `.........Z.....
backtrace:
[<ffffffff819171e1>] __alloc_file+0x21/0x250
[<ffffffff81918061>] alloc_empty_file+0x41/0xf0
[<ffffffff81948cda>] path_openat+0xea/0x3d30
[<ffffffff8194ec89>] do_filp_open+0x1b9/0x290
[<ffffffff8192660e>] do_open_execat+0xce/0x5b0
[<ffffffff81926b17>] open_exec+0x27/0x50
[<ffffffff81a69250>] load_elf_binary+0x510/0x3ed0
[<ffffffff81927759>] bprm_execve+0x599/0x1240
[<ffffffff8192a997>] do_execveat_common.isra.0+0x4c7/0x680
[<ffffffff8192b078>] __x64_sys_execve+0x88/0xb0
[<ffffffff83bbf0a5>] do_syscall_64+0x35/0x80
If "interp_elf_ex" fails to allocate memory in load_elf_binary(),
the program will take the "out_free_ph" error handing path,
resulting in "interpreter" file resource is not released.
Fix it by adding an error handing path "out_free_file", which will
release the file resource when "interp_elf_ex" failed to allocate
memory.
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix leaking uninitialized memory in fast-commit journal
When space at the end of fast-commit journal blocks is unused, make sure
to zero it out so that uninitialized memory is not leaked to disk.
In the Linux kernel, the following vulnerability has been resolved:
mt76: mt7915: Fix PCI device refcount leak in mt7915_pci_init_hif2()
As comment of pci_get_device() says, it returns a pci_device with its
refcount increased. We need to call pci_dev_put() to decrease the
refcount. Save the return value of pci_get_device() and call
pci_dev_put() to decrease the refcount.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/52xx: Fix a resource leak in an error handling path
The error handling path of mpc52xx_lpbfifo_probe() has a request_irq()
that is not balanced by a corresponding free_irq().
Add the missing call, as already done in the remove function.
In the Linux kernel, the following vulnerability has been resolved:
MIPS: vpe-mt: fix possible memory leak while module exiting
Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically,
it need be freed when module exiting, call put_device() to give up
reference, so that it can be freed in kobject_cleanup() when the
refcount hit to 0. The vpe_device is static, so remove kfree() from
vpe_device_release().
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw: Fix PM runtime leakage in am65_cpsw_nuss_ndo_slave_open()
Ensure pm_runtime_put() is issued in error path.
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_flock()
If not flock, before return -ENOLCK, should free the xid,
otherwise, the xid will be leaked.
In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi: iscsi_tcp: Fix null-ptr-deref while calling getpeername()
Fix a NULL pointer crash that occurs when we are freeing the socket at the
same time we access it via sysfs.
The problem is that:
1. iscsi_sw_tcp_conn_get_param() and iscsi_sw_tcp_host_get_param() take
the frwd_lock and do sock_hold() then drop the frwd_lock. sock_hold()
does a get on the "struct sock".
2. iscsi_sw_tcp_release_conn() does sockfd_put() which does the last put
on the "struct socket" and that does __sock_release() which sets the
sock->ops to NULL.
3. iscsi_sw_tcp_conn_get_param() and iscsi_sw_tcp_host_get_param() then
call kernel_getpeername() which accesses the NULL sock->ops.
Above we do a get on the "struct sock", but we needed a get on the "struct
socket". Originally, we just held the frwd_lock the entire time but in
commit bcf3a2953d36 ("scsi: iscsi: iscsi_tcp: Avoid holding spinlock while
calling getpeername()") we switched to refcount based because the network
layer changed and started taking a mutex in that path, so we could no
longer hold the frwd_lock.
Instead of trying to maintain multiple refcounts, this just has us use a
mutex for accessing the socket in the interface code paths.
In the Linux kernel, the following vulnerability has been resolved:
clk: tegra: Fix refcount leak in tegra210_clock_init
of_find_matching_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
mtd: core: Fix refcount error in del_mtd_device()
del_mtd_device() will call of_node_put() to mtd_get_of_node(mtd), which
is mtd->dev.of_node. However, memset(&mtd->dev, 0) is called before
of_node_put(). As the result, of_node_put() won't do anything in
del_mtd_device(), and causes the refcount leak.
del_mtd_device()
memset(&mtd->dev, 0, sizeof(mtd->dev) # clear mtd->dev
of_node_put()
mtd_get_of_node(mtd) # mtd->dev is cleared, can't locate of_node
# of_node_put(NULL) won't do anything
Fix the error by caching the pointer of the device_node.
OF: ERROR: memory leak, expected refcount 1 instead of 2,
of_node_get()/of_node_put() unbalanced - destroy cset entry: attach
overlay node /spi/spi-sram@0
CPU: 3 PID: 275 Comm: python3 Tainted: G N 6.1.0-rc3+ #54
0d8a1edddf51f172ff5226989a7565c6313b08e2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x67/0x83
kobject_get+0x155/0x160
of_node_get+0x1f/0x30
of_fwnode_get+0x43/0x70
fwnode_handle_get+0x54/0x80
fwnode_get_nth_parent+0xc9/0xe0
fwnode_full_name_string+0x3f/0xa0
device_node_string+0x30f/0x750
pointer+0x598/0x7a0
vsnprintf+0x62d/0x9b0
...
cfs_overlay_release+0x30/0x90
config_item_release+0xbe/0x1a0
config_item_put+0x5e/0x80
configfs_rmdir+0x3bd/0x540
vfs_rmdir+0x18c/0x320
do_rmdir+0x198/0x330
__x64_sys_rmdir+0x2c/0x40
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
[<miquel.raynal@bootlin.com>: Light reword of the commit log]
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix resolving backrefs for inline extent followed by prealloc
If a file consists of an inline extent followed by a regular or prealloc
extent, then a legitimate attempt to resolve a logical address in the
non-inline region will result in add_all_parents reading the invalid
offset field of the inline extent. If the inline extent item is placed
in the leaf eb s.t. it is the first item, attempting to access the
offset field will not only be meaningless, it will go past the end of
the eb and cause this panic:
[17.626048] BTRFS warning (device dm-2): bad eb member end: ptr 0x3fd4 start 30834688 member offset 16377 size 8
[17.631693] general protection fault, probably for non-canonical address 0x5088000000000: 0000 [#1] SMP PTI
[17.635041] CPU: 2 PID: 1267 Comm: btrfs Not tainted 5.12.0-07246-g75175d5adc74-dirty #199
[17.637969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[17.641995] RIP: 0010:btrfs_get_64+0xe7/0x110
[17.649890] RSP: 0018:ffffc90001f73a08 EFLAGS: 00010202
[17.651652] RAX: 0000000000000001 RBX: ffff88810c42d000 RCX: 0000000000000000
[17.653921] RDX: 0005088000000000 RSI: ffffc90001f73a0f RDI: 0000000000000001
[17.656174] RBP: 0000000000000ff9 R08: 0000000000000007 R09: c0000000fffeffff
[17.658441] R10: ffffc90001f73790 R11: ffffc90001f73788 R12: ffff888106afe918
[17.661070] R13: 0000000000003fd4 R14: 0000000000003f6f R15: cdcdcdcdcdcdcdcd
[17.663617] FS: 00007f64e7627d80(0000) GS:ffff888237c80000(0000) knlGS:0000000000000000
[17.666525] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[17.668664] CR2: 000055d4a39152e8 CR3: 000000010c596002 CR4: 0000000000770ee0
[17.671253] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[17.673634] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[17.676034] PKRU: 55555554
[17.677004] Call Trace:
[17.677877] add_all_parents+0x276/0x480
[17.679325] find_parent_nodes+0xfae/0x1590
[17.680771] btrfs_find_all_leafs+0x5e/0xa0
[17.682217] iterate_extent_inodes+0xce/0x260
[17.683809] ? btrfs_inode_flags_to_xflags+0x50/0x50
[17.685597] ? iterate_inodes_from_logical+0xa1/0xd0
[17.687404] iterate_inodes_from_logical+0xa1/0xd0
[17.689121] ? btrfs_inode_flags_to_xflags+0x50/0x50
[17.691010] btrfs_ioctl_logical_to_ino+0x131/0x190
[17.692946] btrfs_ioctl+0x104a/0x2f60
[17.694384] ? selinux_file_ioctl+0x182/0x220
[17.695995] ? __x64_sys_ioctl+0x84/0xc0
[17.697394] __x64_sys_ioctl+0x84/0xc0
[17.698697] do_syscall_64+0x33/0x40
[17.700017] entry_SYSCALL_64_after_hwframe+0x44/0xae
[17.701753] RIP: 0033:0x7f64e72761b7
[17.709355] RSP: 002b:00007ffefb067f58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[17.712088] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f64e72761b7
[17.714667] RDX: 00007ffefb067fb0 RSI: 00000000c0389424 RDI: 0000000000000003
[17.717386] RBP: 00007ffefb06d188 R08: 000055d4a390d2b0 R09: 00007f64e7340a60
[17.719938] R10: 0000000000000231 R11: 0000000000000246 R12: 0000000000000001
[17.722383] R13: 0000000000000000 R14: 00000000c0389424 R15: 000055d4a38fd2a0
[17.724839] Modules linked in:
Fix the bug by detecting the inline extent item in add_all_parents and
skipping to the next extent item.
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: fix a use-after-free in nouveau_gem_prime_import_sg_table()
nouveau_bo_init() is backed by ttm_bo_init() and ferries its return code
back to the caller. On failures, ttm will call nouveau_bo_del_ttm() and
free the memory.Thus, when nouveau_bo_init() returns an error, the gem
object has already been released. Then the call to nouveau_bo_ref() will
use the freed "nvbo->bo" and lead to a use-after-free bug.
We should delete the call to nouveau_bo_ref() to avoid the use-after-free.
In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: fix NULL-pointer dereferences
There are several places where we can crash the kernel by requesting
lines, unbinding the GPIO device, then calling any of the system calls
relevant to the GPIO character device's annonymous file descriptors:
ioctl(), read(), poll().
While I observed it with the GPIO simulator, it will also happen for any
of the GPIO devices that can be hot-unplugged - for instance any HID GPIO
expander (e.g. CP2112).
This affects both v1 and v2 uAPI.
This fixes it partially by checking if gdev->chip is not NULL but it
doesn't entirely remedy the situation as we still have a race condition
in which another thread can remove the device after the check.
In the Linux kernel, the following vulnerability has been resolved:
net: sched: cake: fix null pointer access issue when cake_init() fails
When the default qdisc is cake, if the qdisc of dev_queue fails to be
inited during mqprio_init(), cake_reset() is invoked to clear
resources. In this case, the tins is NULL, and it will cause gpf issue.
The process is as follows:
qdisc_create_dflt()
cake_init()
q->tins = kvcalloc(...) --->failed, q->tins is NULL
...
qdisc_put()
...
cake_reset()
...
cake_dequeue_one()
b = &q->tins[...] --->q->tins is NULL
The following is the Call Trace information:
general protection fault, probably for non-canonical address
0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:cake_dequeue_one+0xc9/0x3c0
Call Trace:
<TASK>
cake_reset+0xb1/0x140
qdisc_reset+0xed/0x6f0
qdisc_destroy+0x82/0x4c0
qdisc_put+0x9e/0xb0
qdisc_create_dflt+0x2c3/0x4a0
mqprio_init+0xa71/0x1760
qdisc_create+0x3eb/0x1000
tc_modify_qdisc+0x408/0x1720
rtnetlink_rcv_msg+0x38e/0xac0
netlink_rcv_skb+0x12d/0x3a0
netlink_unicast+0x4a2/0x740
netlink_sendmsg+0x826/0xcc0
sock_sendmsg+0xc5/0x100
____sys_sendmsg+0x583/0x690
___sys_sendmsg+0xe8/0x160
__sys_sendmsg+0xbf/0x160
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f89e5122d04
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: Fix memory leak in _samsung_clk_register_pll()
If clk_register() fails, @pll->rate_table may have allocated memory by
kmemdup(), so it needs to be freed, otherwise will cause memory leak
issue, this patch fixes it.
In the Linux kernel, the following vulnerability has been resolved:
mm/uffd: fix warning without PTE_MARKER_UFFD_WP compiled in
When PTE_MARKER_UFFD_WP not configured, it's still possible to reach pte
marker code and trigger an warning. Add a few CONFIG_PTE_MARKER_UFFD_WP
ifdefs to make sure the code won't be reached when not compiled in.