In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Fix crash on hci_create_cis_sync
When attempting to connect multiple ISO sockets without using
DEFER_SETUP may result in the following crash:
BUG: KASAN: null-ptr-deref in hci_create_cis_sync+0x18b/0x2b0
Read of size 2 at addr 0000000000000036 by task kworker/u3:1/50
CPU: 0 PID: 50 Comm: kworker/u3:1 Not tainted
6.0.0-rc7-02243-gb84a13ff4eda #4373
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009),
BIOS 1.16.0-1.fc36 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x19/0x27
kasan_report+0xbc/0xf0
? hci_create_cis_sync+0x18b/0x2b0
hci_create_cis_sync+0x18b/0x2b0
? get_link_mode+0xd0/0xd0
? __ww_mutex_lock_slowpath+0x10/0x10
? mutex_lock+0xe0/0xe0
? get_link_mode+0xd0/0xd0
hci_cmd_sync_work+0x111/0x190
process_one_work+0x427/0x650
worker_thread+0x87/0x750
? process_one_work+0x650/0x650
kthread+0x14e/0x180
? kthread_exit+0x50/0x50
ret_from_fork+0x22/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
ARC: mm: fix leakage of memory allocated for PTE
Since commit d9820ff ("ARC: mm: switch pgtable_t back to struct page *")
a memory leakage problem occurs. Memory allocated for page table entries
not released during process termination. This issue can be reproduced by
a small program that allocates a large amount of memory. After several
runs, you'll see that the amount of free memory has reduced and will
continue to reduce after each run. All ARC CPUs are effected by this
issue. The issue was introduced since the kernel stable release v5.15-rc1.
As described in commit d9820ff after switch pgtable_t back to struct
page *, a pointer to "struct page" and appropriate functions are used to
allocate and free a memory page for PTEs, but the pmd_pgtable macro hasn't
changed and returns the direct virtual address from the PMD (PGD) entry.
Than this address used as a parameter in the __pte_free() and as a result
this function couldn't release memory page allocated for PTEs.
Fix this issue by changing the pmd_pgtable macro and returning pointer to
struct page.
In the Linux kernel, the following vulnerability has been resolved:
clk: tegra20: Fix refcount leak in tegra20_clock_init
of_find_matching_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
drm/rockchip: lvds: fix PM usage counter unbalance in poweron
pm_runtime_get_sync will increment pm usage counter even it failed.
Forgetting to putting operation will result in reference leak here.
We fix it by replacing it with the newest pm_runtime_resume_and_get
to keep usage counter balanced.
In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Validate the box size for the snooped cursor
Invalid userspace dma surface copies could potentially overflow
the memcpy from the surface to the snooped image leading to crashes.
To fix it the dimensions of the copybox have to be validated
against the expected size of the snooped cursor.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8173: Enable IRQ when pdata is ready
If the device does not come straight from reset, we might receive an IRQ
before we are ready to handle it.
[ 2.334737] Unable to handle kernel read from unreadable memory at virtual address 00000000000001e4
[ 2.522601] Call trace:
[ 2.525040] regmap_read+0x1c/0x80
[ 2.528434] mt8173_afe_irq_handler+0x40/0xf0
...
[ 2.598921] start_kernel+0x338/0x42c
In the Linux kernel, the following vulnerability has been resolved:
net: hinic: fix memory leak when reading function table
When the input parameter idx meets the expected case option in
hinic_dbg_get_func_table(), read_data is not released. Fix it.
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/hdmi: fix memory corruption with too many bridges
Add the missing sanity check on the bridge counter to avoid corrupting
data beyond the fixed-sized bridge array in case there are ever more
than eight bridges.
Patchwork: https://patchwork.freedesktop.org/patch/502670/
In the Linux kernel, the following vulnerability has been resolved:
ext4: don't set up encryption key during jbd2 transaction
Commit a80f7fcf1867 ("ext4: fixup ext4_fc_track_* functions' signature")
extended the scope of the transaction in ext4_unlink() too far, making
it include the call to ext4_find_entry(). However, ext4_find_entry()
can deadlock when called from within a transaction because it may need
to set up the directory's encryption key.
Fix this by restoring the transaction to its original scope.
In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid crash when inline data creation follows DIO write
When inode is created and written to using direct IO, there is nothing
to clear the EXT4_STATE_MAY_INLINE_DATA flag. Thus when inode gets
truncated later to say 1 byte and written using normal write, we will
try to store the data as inline data. This confuses the code later
because the inode now has both normal block and inline data allocated
and the confusion manifests for example as:
kernel BUG at fs/ext4/inode.c:2721!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 359 Comm: repro Not tainted 5.19.0-rc8-00001-g31ba1e3b8305-dirty #15
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
RIP: 0010:ext4_writepages+0x363d/0x3660
RSP: 0018:ffffc90000ccf260 EFLAGS: 00010293
RAX: ffffffff81e1abcd RBX: 0000008000000000 RCX: ffff88810842a180
RDX: 0000000000000000 RSI: 0000008000000000 RDI: 0000000000000000
RBP: ffffc90000ccf650 R08: ffffffff81e17d58 R09: ffffed10222c680b
R10: dfffe910222c680c R11: 1ffff110222c680a R12: ffff888111634128
R13: ffffc90000ccf880 R14: 0000008410000000 R15: 0000000000000001
FS: 00007f72635d2640(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000565243379180 CR3: 000000010aa74000 CR4: 0000000000150eb0
Call Trace:
<TASK>
do_writepages+0x397/0x640
filemap_fdatawrite_wbc+0x151/0x1b0
file_write_and_wait_range+0x1c9/0x2b0
ext4_sync_file+0x19e/0xa00
vfs_fsync_range+0x17b/0x190
ext4_buffered_write_iter+0x488/0x530
ext4_file_write_iter+0x449/0x1b90
vfs_write+0xbcd/0xf40
ksys_write+0x198/0x2c0
__x64_sys_write+0x7b/0x90
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Fix the problem by clearing EXT4_STATE_MAY_INLINE_DATA when we are doing
direct IO write to a file.
In the Linux kernel, the following vulnerability has been resolved:
efi: ssdt: Don't free memory if ACPI table was loaded successfully
Amadeusz reports KASAN use-after-free errors introduced by commit
3881ee0b1edc ("efi: avoid efivars layer when loading SSDTs from
variables"). The problem appears to be that the memory that holds the
new ACPI table is now freed unconditionally, instead of only when the
ACPI core reported a failure to load the table.
So let's fix this, by omitting the kfree() on success.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: aoa: i2sbus: fix possible memory leak in i2sbus_add_dev()
dev_set_name() in soundbus_add_one() allocates memory for name, it need be
freed when of_device_register() fails, call soundbus_dev_put() to give up
the reference that hold in device_initialize(), so that it can be freed in
kobject_cleanup() when the refcount hit to 0. And other resources are also
freed in i2sbus_release_dev(), so it can return 0 directly.
In the Linux kernel, the following vulnerability has been resolved:
memory: of: Fix refcount leak bug in of_lpddr3_get_ddr_timings()
We should add the of_node_put() when breaking out of
for_each_child_of_node() as it will automatically increase
and decrease the refcount.
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one errors in fast-commit block filling
Due to several different off-by-one errors, or perhaps due to a late
change in design that wasn't fully reflected in the code that was
actually merged, there are several very strange constraints on how
fast-commit blocks are filled with tlv entries:
- tlvs must start at least 10 bytes before the end of the block, even
though the minimum tlv length is 8. Otherwise, the replay code will
ignore them. (BUG: ext4_fc_reserve_space() could violate this
requirement if called with a len of blocksize - 9 or blocksize - 8.
Fortunately, this doesn't seem to happen currently.)
- tlvs must end at least 1 byte before the end of the block. Otherwise
the replay code will consider them to be invalid. This quirk
contributed to a bug (fixed by an earlier commit) where uninitialized
memory was being leaked to disk in the last byte of blocks.
Also, strangely these constraints don't apply to the replay code in
e2fsprogs, which will accept any tlvs in the blocks (with no bounds
checks at all, but that is a separate issue...).
Given that this all seems to be a bug, let's fix it by just filling
blocks with tlv entries in the natural way.
Note that old kernels will be unable to replay fast-commit journals
created by kernels that have this commit.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: ac97: fix possible memory leak in snd_ac97_dev_register()
If device_register() fails in snd_ac97_dev_register(), it should
call put_device() to give up reference, or the name allocated in
dev_set_name() is leaked.
In the Linux kernel, the following vulnerability has been resolved:
remoteproc: imx_dsp_rproc: Add mutex protection for workqueue
The workqueue may execute late even after remoteproc is stopped or
stopping, some resources (rpmsg device and endpoint) have been
released in rproc_stop_subdevices(), then rproc_vq_interrupt()
accessing these resources will cause kennel dump.
Call trace:
virtqueue_add_split+0x1ac/0x560
virtqueue_add_inbuf+0x4c/0x60
rpmsg_recv_done+0x15c/0x294
vring_interrupt+0x6c/0xa4
rproc_vq_interrupt+0x30/0x50
imx_dsp_rproc_vq_work+0x24/0x40 [imx_dsp_rproc]
process_one_work+0x1d0/0x354
worker_thread+0x13c/0x470
kthread+0x154/0x160
ret_from_fork+0x10/0x20
Add mutex protection in imx_dsp_rproc_vq_work(), if the state is
not running, then just skip calling rproc_vq_interrupt().
Also the flush workqueue operation can't be added in rproc stop
for the same reason. The call sequence is
rproc_shutdown
-> rproc_stop
->rproc_stop_subdevices
->rproc->ops->stop()
->imx_dsp_rproc_stop
->flush_work
-> rproc_vq_interrupt
The resource needed by rproc_vq_interrupt has been released in
rproc_stop_subdevices, so flush_work is not safe to be called in
imx_dsp_rproc_stop.
In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly
When an extended state component is not present in fpstate, but in init
state, the function copies from init_fpstate via copy_feature().
But, dynamic states are not present in init_fpstate because of all-zeros
init states. Then retrieving them from init_fpstate will explode like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
RIP: 0010:memcpy_erms+0x6/0x10
? __copy_xstate_to_uabi_buf+0x381/0x870
fpu_copy_guest_fpstate_to_uabi+0x28/0x80
kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm]
? __this_cpu_preempt_check+0x13/0x20
? vmx_vcpu_put+0x2e/0x260 [kvm_intel]
kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? __fget_light+0xd4/0x130
__x64_sys_ioctl+0xe3/0x910
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x27/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Adjust the 'mask' to zero out the userspace buffer for the features that
are not available both from fpstate and from init_fpstate.
The dynamic features depend on the compacted XSAVE format. Ensure it is
enabled before reading XCOMP_BV in init_fpstate.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: resource leaks at mt7921_check_offload_capability()
Fixed coverity issue with resource leaks at variable "fw" going out of
scope leaks the storage it points to mt7921_check_offload_capability().
Addresses-Coverity-ID: 1527806 ("Resource leaks")
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage()
There is an use-after-free reported by KASAN:
BUG: KASAN: use-after-free in acpi_ut_remove_reference+0x3b/0x82
Read of size 1 at addr ffff888112afc460 by task modprobe/2111
CPU: 0 PID: 2111 Comm: modprobe Not tainted 6.1.0-rc7-dirty
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
Call Trace:
<TASK>
kasan_report+0xae/0xe0
acpi_ut_remove_reference+0x3b/0x82
acpi_ut_copy_iobject_to_iobject+0x3be/0x3d5
acpi_ds_store_object_to_local+0x15d/0x3a0
acpi_ex_store+0x78d/0x7fd
acpi_ex_opcode_1A_1T_1R+0xbe4/0xf9b
acpi_ps_parse_aml+0x217/0x8d5
...
</TASK>
The root cause of the problem is that the acpi_operand_object
is freed when acpi_ut_walk_package_tree() fails in
acpi_ut_copy_ipackage_to_ipackage(), lead to repeated release in
acpi_ut_copy_iobject_to_iobject(). The problem was introduced
by "8aa5e56eeb61" commit, this commit is to fix memory leak in
acpi_ut_copy_iobject_to_iobject(), repeatedly adding remove
operation, lead to "acpi_operand_object" used after free.
Fix it by removing acpi_ut_remove_reference() in
acpi_ut_copy_ipackage_to_ipackage(). acpi_ut_copy_ipackage_to_ipackage()
is called to copy an internal package object into another internal
package object, when it fails, the memory of acpi_operand_object
should be freed by the caller.
In the Linux kernel, the following vulnerability has been resolved:
scsi: libsas: Fix use-after-free bug in smp_execute_task_sg()
When executing SMP task failed, the smp_execute_task_sg() calls del_timer()
to delete "slow_task->timer". However, if the timer handler
sas_task_internal_timedout() is running, the del_timer() in
smp_execute_task_sg() will not stop it and a UAF will happen. The process
is shown below:
(thread 1) | (thread 2)
smp_execute_task_sg() | sas_task_internal_timedout()
... |
del_timer() |
... | ...
sas_free_task(task) |
kfree(task->slow_task) //FREE|
| task->slow_task->... //USE
Fix by calling del_timer_sync() in smp_execute_task_sg(), which makes sure
the timer handler have finished before the "task->slow_task" is
deallocated.
In the Linux kernel, the following vulnerability has been resolved:
rpmsg: char: Avoid double destroy of default endpoint
The rpmsg_dev_remove() in rpmsg_core is the place for releasing
this default endpoint.
So need to avoid destroying the default endpoint in
rpmsg_chrdev_eptdev_destroy(), this should be the same as
rpmsg_eptdev_release(). Otherwise there will be double destroy
issue that ept->refcount report warning:
refcount_t: underflow; use-after-free.
Call trace:
refcount_warn_saturate+0xf8/0x150
virtio_rpmsg_destroy_ept+0xd4/0xec
rpmsg_dev_remove+0x60/0x70
The issue can be reproduced by stopping remoteproc before
closing the /dev/rpmsgX.
In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/hpre - fix resource leak in remove process
In hpre_remove(), when the disable operation of qm sriov failed,
the following logic should continue to be executed to release the
remaining resources that have been allocated, instead of returning
directly, otherwise there will be resource leakage.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix UBSAN shift-out-of-bounds warning
If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up
doing a shift operation where the number of bits shifted equals
number of bits in the operand. This behaviour is undefined.
Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the
count is >= number of bits in the operand.
Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472
DX Unified Infrastructure Management (Nimsoft/UIM) and below contains an improper ACL handling vulnerability in the robot (controller) component. A remote attacker can execute commands, read from, or write to the target system.
Deserialization of untrusted data in python in pyfory versions 0.12.0 through 0.12.2, or the legacy pyfury versions from 0.1.0 through 0.10.3: allows arbitrary code execution. An application is vulnerable if it reads pyfory serialized data from untrusted sources. An attacker can craft a data stream that selects pickle-fallback serializer during deserialization, leading to the execution of `pickle.loads`, which is vulnerable to remote code execution.
Users are recommended to upgrade to pyfory version 0.12.3 or later, which has removed pickle fallback serializer and thus fixes this issue.
In the Linux kernel, the following vulnerability has been resolved:
i2c: rtl9300: ensure data length is within supported range
Add an explicit check for the xfer length to 'rtl9300_i2c_config_xfer'
to ensure the data length isn't within the supported range. In
particular a data length of 0 is not supported by the hardware and
causes unintended or destructive behaviour.
This limitation becomes obvious when looking at the register
documentation [1]. 4 bits are reserved for DATA_WIDTH and the value
of these 4 bits is used as N + 1, allowing a data length range of
1 <= len <= 16.
Affected by this is the SMBus Quick Operation which works with a data
length of 0. Passing 0 as the length causes an underflow of the value
due to:
(len - 1) & 0xf
and effectively specifying a transfer length of 16 via the registers.
This causes a 16-byte write operation instead of a Quick Write. For
example, on SFP modules without write-protected EEPROM this soft-bricks
them by overwriting some initial bytes.
For completeness, also add a quirk for the zero length.
[1] https://svanheule.net/realtek/longan/register/i2c_mst1_ctrl2
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix race condition validating r_parent before applying state
Add validation to ensure the cached parent directory inode matches the
directory info in MDS replies. This prevents client-side race conditions
where concurrent operations (e.g. rename) cause r_parent to become stale
between request initiation and reply processing, which could lead to
applying state changes to incorrect directory inodes.
[ idryomov: folded a kerneldoc fixup and a follow-up fix from Alex to
move CEPH_CAP_PIN reference when r_parent is updated:
When the parent directory lock is not held, req->r_parent can become
stale and is updated to point to the correct inode. However, the
associated CEPH_CAP_PIN reference was not being adjusted. The
CEPH_CAP_PIN is a reference on an inode that is tracked for
accounting purposes. Moving this pin is important to keep the
accounting balanced. When the pin was not moved from the old parent
to the new one, it created two problems: The reference on the old,
stale parent was never released, causing a reference leak.
A reference for the new parent was never acquired, creating the risk
of a reference underflow later in ceph_mdsc_release_request(). This
patch corrects the logic by releasing the pin from the old parent and
acquiring it for the new parent when r_parent is switched. This
ensures reference accounting stays balanced. ]
In the Linux kernel, the following vulnerability has been resolved:
genetlink: fix genl_bind() invoking bind() after -EPERM
Per family bind/unbind callbacks were introduced to allow families
to track multicast group consumer presence, e.g. to start or stop
producing events depending on listeners.
However, in genl_bind() the bind() callback was invoked even if
capability checks failed and ret was set to -EPERM. This means that
callbacks could run on behalf of unauthorized callers while the
syscall still returned failure to user space.
Fix this by only invoking bind() after "if (ret) break;" check
i.e. after permission checks have succeeded.
In the Linux kernel, the following vulnerability has been resolved:
can: j1939: implement NETDEV_UNREGISTER notification handler
syzbot is reporting
unregister_netdevice: waiting for vcan0 to become free. Usage count = 2
problem, for j1939 protocol did not have NETDEV_UNREGISTER notification
handler for undoing changes made by j1939_sk_bind().
Commit 25fe97cb7620 ("can: j1939: move j1939_priv_put() into sk_destruct
callback") expects that a call to j1939_priv_put() can be unconditionally
delayed until j1939_sk_sock_destruct() is called. But we need to call
j1939_priv_put() against an extra ref held by j1939_sk_bind() call
(as a part of undoing changes made by j1939_sk_bind()) as soon as
NETDEV_UNREGISTER notification fires (i.e. before j1939_sk_sock_destruct()
is called via j1939_sk_release()). Otherwise, the extra ref on "struct
j1939_priv" held by j1939_sk_bind() call prevents "struct net_device" from
dropping the usage count to 1; making it impossible for
unregister_netdevice() to continue.
[mkl: remove space in front of label]
In the Linux kernel, the following vulnerability has been resolved:
erofs: fix invalid algorithm for encoded extents
The current algorithm sanity checks do not properly apply to new
encoded extents.
Unify the algorithm check with Z_EROFS_COMPRESSION(_RUNTIME)_MAX
and ensure consistency with sbi->available_compr_algs.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: qcom: bam_dma: Fix DT error handling for num-channels/ees
When we don't have a clock specified in the device tree, we have no way to
ensure the BAM is on. This is often the case for remotely-controlled or
remotely-powered BAM instances. In this case, we need to read num-channels
from the DT to have all the necessary information to complete probing.
However, at the moment invalid device trees without clock and without
num-channels still continue probing, because the error handling is missing
return statements. The driver will then later try to read the number of
channels from the registers. This is unsafe, because it relies on boot
firmware and lucky timing to succeed. Unfortunately, the lack of proper
error handling here has been abused for several Qualcomm SoCs upstream,
causing early boot crashes in several situations [1, 2].
Avoid these early crashes by erroring out when any of the required DT
properties are missing. Note that this will break some of the existing DTs
upstream (mainly BAM instances related to the crypto engine). However,
clearly these DTs have never been tested properly, since the error in the
kernel log was just ignored. It's safer to disable the crypto engine for
these broken DTBs.
[1]: https://lore.kernel.org/r/CY01EKQVWE36.B9X5TDXAREPF@fairphone.com/
[2]: https://lore.kernel.org/r/20230626145959.646747-1-krzysztof.kozlowski@linaro.org/
In the Linux kernel, the following vulnerability has been resolved:
ixgbe: fix incorrect map used in eee linkmode
incorrectly used ixgbe_lp_map in loops intended to populate the
supported and advertised EEE linkmode bitmaps based on ixgbe_ls_map.
This results in incorrect bit setting and potential out-of-bounds
access, since ixgbe_lp_map and ixgbe_ls_map have different sizes
and purposes.
ixgbe_lp_map[i] -> ixgbe_ls_map[i]
Use ixgbe_ls_map for supported and advertised linkmodes, and keep
ixgbe_lp_map usage only for link partner (lp_advertised) mapping.
In the Linux kernel, the following vulnerability has been resolved:
spi: microchip-core-qspi: stop checking viability of op->max_freq in supports_op callback
In commit 13529647743d9 ("spi: microchip-core-qspi: Support per spi-mem
operation frequency switches") the logic for checking the viability of
op->max_freq in mchp_coreqspi_setup_clock() was copied into
mchp_coreqspi_supports_op(). Unfortunately, op->max_freq is not valid
when this function is called during probe but is instead zero.
Accordingly, baud_rate_val is calculated to be INT_MAX due to division
by zero, causing probe of the attached memory device to fail.
Seemingly spi-microchip-core-qspi was the only driver that had such a
modification made to its supports_op callback when the per_op_freq
capability was added, so just remove it to restore prior functionality.
In the Linux kernel, the following vulnerability has been resolved:
pcmcia: Add error handling for add_interval() in do_validate_mem()
In the do_validate_mem(), the call to add_interval() does not
handle errors. If kmalloc() fails in add_interval(), it could
result in a null pointer being inserted into the linked list,
leading to illegal memory access when sub_interval() is called
next.
This patch adds an error handling for the add_interval(). If
add_interval() returns an error, the function will return early
with the error code.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: add missing check for rx wcid entries
Non-station wcid entries must not be passed to the rx functions.
In case of the global wcid entry, it could even lead to corruption in the wcid
array due to pointer being casted to struct mt7996_sta_link using container_of.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: fix linked list corruption
Never leave scheduled wcid entries on the temporary on-stack list
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix out-of-bounds dynptr write in bpf_crypto_crypt
Stanislav reported that in bpf_crypto_crypt() the destination dynptr's
size is not validated to be at least as large as the source dynptr's
size before calling into the crypto backend with 'len = src_len'. This
can result in an OOB write when the destination is smaller than the
source.
Concretely, in mentioned function, psrc and pdst are both linear
buffers fetched from each dynptr:
psrc = __bpf_dynptr_data(src, src_len);
[...]
pdst = __bpf_dynptr_data_rw(dst, dst_len);
[...]
err = decrypt ?
ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv) :
ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv);
The crypto backend expects pdst to be large enough with a src_len length
that can be written. Add an additional src_len > dst_len check and bail
out if it's the case. Note that these kfuncs are accessible under root
privileges only.
In the Linux kernel, the following vulnerability has been resolved:
mm/damon/reclaim: avoid divide-by-zero in damon_reclaim_apply_parameters()
When creating a new scheme of DAMON_RECLAIM, the calculation of
'min_age_region' uses 'aggr_interval' as the divisor, which may lead to
division-by-zero errors. Fix it by directly returning -EINVAL when such a
case occurs.
In the Linux kernel, the following vulnerability has been resolved:
net: phy: transfer phy_config_inband() locking responsibility to phylink
Problem description
===================
Lockdep reports a possible circular locking dependency (AB/BA) between
&pl->state_mutex and &phy->lock, as follows.
phylink_resolve() // acquires &pl->state_mutex
-> phylink_major_config()
-> phy_config_inband() // acquires &pl->phydev->lock
whereas all the other call sites where &pl->state_mutex and
&pl->phydev->lock have the locking scheme reversed. Everywhere else,
&pl->phydev->lock is acquired at the top level, and &pl->state_mutex at
the lower level. A clear example is phylink_bringup_phy().
The outlier is the newly introduced phy_config_inband() and the existing
lock order is the correct one. To understand why it cannot be the other
way around, it is sufficient to consider phylink_phy_change(), phylink's
callback from the PHY device's phy->phy_link_change() virtual method,
invoked by the PHY state machine.
phy_link_up() and phy_link_down(), the (indirect) callers of
phylink_phy_change(), are called with &phydev->lock acquired.
Then phylink_phy_change() acquires its own &pl->state_mutex, to
serialize changes made to its pl->phy_state and pl->link_config.
So all other instances of &pl->state_mutex and &phydev->lock must be
consistent with this order.
Problem impact
==============
I think the kernel runs a serious deadlock risk if an existing
phylink_resolve() thread, which results in a phy_config_inband() call,
is concurrent with a phy_link_up() or phy_link_down() call, which will
deadlock on &pl->state_mutex in phylink_phy_change(). Practically
speaking, the impact may be limited by the slow speed of the medium
auto-negotiation protocol, which makes it unlikely for the current state
to still be unresolved when a new one is detected, but I think the
problem is there. Nonetheless, the problem was discovered using lockdep.
Proposed solution
=================
Practically speaking, the phy_config_inband() requirement of having
phydev->lock acquired must transfer to the caller (phylink is the only
caller). There, it must bubble up until immediately before
&pl->state_mutex is acquired, for the cases where that takes place.
Solution details, considerations, notes
=======================================
This is the phy_config_inband() call graph:
sfp_upstream_ops :: connect_phy()
|
v
phylink_sfp_connect_phy()
|
v
phylink_sfp_config_phy()
|
| sfp_upstream_ops :: module_insert()
| |
| v
| phylink_sfp_module_insert()
| |
| | sfp_upstream_ops :: module_start()
| | |
| | v
| | phylink_sfp_module_start()
| | |
| v v
| phylink_sfp_config_optical()
phylink_start() | |
| phylink_resume() v v
| | phylink_sfp_set_config()
| | |
v v v
phylink_mac_initial_config()
| phylink_resolve()
| | phylink_ethtool_ksettings_set()
v v v
phylink_major_config()
|
v
phy_config_inband()
phylink_major_config() caller #1, phylink_mac_initial_config(), does not
acquire &pl->state_mutex nor do its callers. It must acquire
&pl->phydev->lock prior to calling phylink_major_config().
phylink_major_config() caller #2, phylink_resolve() acquires
&pl->state_mutex, thus also needs to acquire &pl->phydev->lock.
phylink_major_config() caller #3, phylink_ethtool_ksettings_set(), is
completely uninteresting, because it only call
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
tracing: Silence warning when chunk allocation fails in trace_pid_write
Syzkaller trigger a fault injection warning:
WARNING: CPU: 1 PID: 12326 at tracepoint_add_func+0xbfc/0xeb0
Modules linked in:
CPU: 1 UID: 0 PID: 12326 Comm: syz.6.10325 Tainted: G U 6.14.0-rc5-syzkaller #0
Tainted: [U]=USER
Hardware name: Google Compute Engine/Google Compute Engine
RIP: 0010:tracepoint_add_func+0xbfc/0xeb0 kernel/tracepoint.c:294
Code: 09 fe ff 90 0f 0b 90 0f b6 74 24 43 31 ff 41 bc ea ff ff ff
RSP: 0018:ffffc9000414fb48 EFLAGS: 00010283
RAX: 00000000000012a1 RBX: ffffffff8e240ae0 RCX: ffffc90014b78000
RDX: 0000000000080000 RSI: ffffffff81bbd78b RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffffffffffffffef
R13: 0000000000000000 R14: dffffc0000000000 R15: ffffffff81c264f0
FS: 00007f27217f66c0(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b2e80dff8 CR3: 00000000268f8000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tracepoint_probe_register_prio+0xc0/0x110 kernel/tracepoint.c:464
register_trace_prio_sched_switch include/trace/events/sched.h:222 [inline]
register_pid_events kernel/trace/trace_events.c:2354 [inline]
event_pid_write.isra.0+0x439/0x7a0 kernel/trace/trace_events.c:2425
vfs_write+0x24c/0x1150 fs/read_write.c:677
ksys_write+0x12b/0x250 fs/read_write.c:731
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
We can reproduce the warning by following the steps below:
1. echo 8 >> set_event_notrace_pid. Let tr->filtered_pids owns one pid
and register sched_switch tracepoint.
2. echo ' ' >> set_event_pid, and perform fault injection during chunk
allocation of trace_pid_list_alloc. Let pid_list with no pid and
assign to tr->filtered_pids.
3. echo ' ' >> set_event_pid. Let pid_list is NULL and assign to
tr->filtered_pids.
4. echo 9 >> set_event_pid, will trigger the double register
sched_switch tracepoint warning.
The reason is that syzkaller injects a fault into the chunk allocation
in trace_pid_list_alloc, causing a failure in trace_pid_list_set, which
may trigger double register of the same tracepoint. This only occurs
when the system is about to crash, but to suppress this warning, let's
add failure handling logic to trace_pid_list_set.
In the Linux kernel, the following vulnerability has been resolved:
tcp_bpf: Call sk_msg_free() when tcp_bpf_send_verdict() fails to allocate psock->cork.
syzbot reported the splat below. [0]
The repro does the following:
1. Load a sk_msg prog that calls bpf_msg_cork_bytes(msg, cork_bytes)
2. Attach the prog to a SOCKMAP
3. Add a socket to the SOCKMAP
4. Activate fault injection
5. Send data less than cork_bytes
At 5., the data is carried over to the next sendmsg() as it is
smaller than the cork_bytes specified by bpf_msg_cork_bytes().
Then, tcp_bpf_send_verdict() tries to allocate psock->cork to hold
the data, but this fails silently due to fault injection + __GFP_NOWARN.
If the allocation fails, we need to revert the sk->sk_forward_alloc
change done by sk_msg_alloc().
Let's call sk_msg_free() when tcp_bpf_send_verdict fails to allocate
psock->cork.
The "*copied" also needs to be updated such that a proper error can
be returned to the caller, sendmsg. It fails to allocate psock->cork.
Nothing has been corked so far, so this patch simply sets "*copied"
to 0.
[0]:
WARNING: net/ipv4/af_inet.c:156 at inet_sock_destruct+0x623/0x730 net/ipv4/af_inet.c:156, CPU#1: syz-executor/5983
Modules linked in:
CPU: 1 UID: 0 PID: 5983 Comm: syz-executor Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
RIP: 0010:inet_sock_destruct+0x623/0x730 net/ipv4/af_inet.c:156
Code: 0f 0b 90 e9 62 fe ff ff e8 7a db b5 f7 90 0f 0b 90 e9 95 fe ff ff e8 6c db b5 f7 90 0f 0b 90 e9 bb fe ff ff e8 5e db b5 f7 90 <0f> 0b 90 e9 e1 fe ff ff 89 f9 80 e1 07 80 c1 03 38 c1 0f 8c 9f fc
RSP: 0018:ffffc90000a08b48 EFLAGS: 00010246
RAX: ffffffff8a09d0b2 RBX: dffffc0000000000 RCX: ffff888024a23c80
RDX: 0000000000000100 RSI: 0000000000000fff RDI: 0000000000000000
RBP: 0000000000000fff R08: ffff88807e07c627 R09: 1ffff1100fc0f8c4
R10: dffffc0000000000 R11: ffffed100fc0f8c5 R12: ffff88807e07c380
R13: dffffc0000000000 R14: ffff88807e07c60c R15: 1ffff1100fc0f872
FS: 00005555604c4500(0000) GS:ffff888125af1000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005555604df5c8 CR3: 0000000032b06000 CR4: 00000000003526f0
Call Trace:
<IRQ>
__sk_destruct+0x86/0x660 net/core/sock.c:2339
rcu_do_batch kernel/rcu/tree.c:2605 [inline]
rcu_core+0xca8/0x1770 kernel/rcu/tree.c:2861
handle_softirqs+0x286/0x870 kernel/softirq.c:579
__do_softirq kernel/softirq.c:613 [inline]
invoke_softirq kernel/softirq.c:453 [inline]
__irq_exit_rcu+0xca/0x1f0 kernel/softirq.c:680
irq_exit_rcu+0x9/0x30 kernel/softirq.c:696
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1052 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1052
</IRQ>
In the Linux kernel, the following vulnerability has been resolved:
nfs/localio: restore creds before releasing pageio data
Otherwise if the nfsd filecache code releases the nfsd_file
immediately, it can trigger the BUG_ON(cred == current->cred) in
__put_cred() when it puts the nfsd_file->nf_file->f-cred.
In the Linux kernel, the following vulnerability has been resolved:
i40e: fix IRQ freeing in i40e_vsi_request_irq_msix error path
If request_irq() in i40e_vsi_request_irq_msix() fails in an iteration
later than the first, the error path wants to free the IRQs requested
so far. However, it uses the wrong dev_id argument for free_irq(), so
it does not free the IRQs correctly and instead triggers the warning:
Trying to free already-free IRQ 173
WARNING: CPU: 25 PID: 1091 at kernel/irq/manage.c:1829 __free_irq+0x192/0x2c0
Modules linked in: i40e(+) [...]
CPU: 25 UID: 0 PID: 1091 Comm: NetworkManager Not tainted 6.17.0-rc1+ #1 PREEMPT(lazy)
Hardware name: [...]
RIP: 0010:__free_irq+0x192/0x2c0
[...]
Call Trace:
<TASK>
free_irq+0x32/0x70
i40e_vsi_request_irq_msix.cold+0x63/0x8b [i40e]
i40e_vsi_request_irq+0x79/0x80 [i40e]
i40e_vsi_open+0x21f/0x2f0 [i40e]
i40e_open+0x63/0x130 [i40e]
__dev_open+0xfc/0x210
__dev_change_flags+0x1fc/0x240
netif_change_flags+0x27/0x70
do_setlink.isra.0+0x341/0xc70
rtnl_newlink+0x468/0x860
rtnetlink_rcv_msg+0x375/0x450
netlink_rcv_skb+0x5c/0x110
netlink_unicast+0x288/0x3c0
netlink_sendmsg+0x20d/0x430
____sys_sendmsg+0x3a2/0x3d0
___sys_sendmsg+0x99/0xe0
__sys_sendmsg+0x8a/0xf0
do_syscall_64+0x82/0x2c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
</TASK>
---[ end trace 0000000000000000 ]---
Use the same dev_id for free_irq() as for request_irq().
I tested this with inserting code to fail intentionally.
In the Linux kernel, the following vulnerability has been resolved:
mm/vmalloc, mm/kasan: respect gfp mask in kasan_populate_vmalloc()
kasan_populate_vmalloc() and its helpers ignore the caller's gfp_mask and
always allocate memory using the hardcoded GFP_KERNEL flag. This makes
them inconsistent with vmalloc(), which was recently extended to support
GFP_NOFS and GFP_NOIO allocations.
Page table allocations performed during shadow population also ignore the
external gfp_mask. To preserve the intended semantics of GFP_NOFS and
GFP_NOIO, wrap the apply_to_page_range() calls into the appropriate
memalloc scope.
xfs calls vmalloc with GFP_NOFS, so this bug could lead to deadlock.
There was a report here
https://lkml.kernel.org/r/686ea951.050a0220.385921.0016.GAE@google.com
This patch:
- Extends kasan_populate_vmalloc() and helpers to take gfp_mask;
- Passes gfp_mask down to alloc_pages_bulk() and __get_free_page();
- Enforces GFP_NOFS/NOIO semantics with memalloc_*_save()/restore()
around apply_to_page_range();
- Updates vmalloc.c and percpu allocator call sites accordingly.