A vulnerability was determined in SourceCodester Pet Grooming Management Software 1.0. This vulnerability affects unknown code of the file /admin/operation/paid.php. This manipulation of the argument inv_no/insta_amt causes sql injection. The attack can be initiated remotely. The exploit has been publicly disclosed and may be utilized.
If the PATH environment variable contains paths which are executables (rather than just directories), passing certain strings to LookPath ("", ".", and ".."), can result in the binaries listed in the PATH being unexpectedly returned.
An issue in ClipBucket 5.5.0 and prior versions allows an unauthenticated attacker can exploit the plupload endpoint in photo_uploader.php to upload arbitrary files without any authentication, due to missing access controls in the upload handler
A weakness has been identified in fuyang_lipengjun platform 1.0. Affected is the function BrandController of the file /brand/queryAll. Executing manipulation can lead to improper authorization. The attack can be executed remotely. The exploit has been made available to the public and could be exploited.
A security flaw has been discovered in fuyang_lipengjun platform 1.0. This impacts the function AttributeController of the file /attribute/queryAll. Performing manipulation results in improper authorization. Remote exploitation of the attack is possible. The exploit has been released to the public and may be exploited.
A vulnerability was identified in fuyang_lipengjun platform 1.0. This affects the function AttributeCategoryController of the file /attributecategory/queryAll. Such manipulation leads to improper authorization. The attack may be launched remotely. The exploit is publicly available and might be used.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: don't reset unchangable mount option in f2fs_remount()
syzbot reports a bug as below:
general protection fault, probably for non-canonical address 0xdffffc0000000009: 0000 [#1] PREEMPT SMP KASAN
RIP: 0010:__lock_acquire+0x69/0x2000 kernel/locking/lockdep.c:4942
Call Trace:
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5691
__raw_write_lock include/linux/rwlock_api_smp.h:209 [inline]
_raw_write_lock+0x2e/0x40 kernel/locking/spinlock.c:300
__drop_extent_tree+0x3ac/0x660 fs/f2fs/extent_cache.c:1100
f2fs_drop_extent_tree+0x17/0x30 fs/f2fs/extent_cache.c:1116
f2fs_insert_range+0x2d5/0x3c0 fs/f2fs/file.c:1664
f2fs_fallocate+0x4e4/0x6d0 fs/f2fs/file.c:1838
vfs_fallocate+0x54b/0x6b0 fs/open.c:324
ksys_fallocate fs/open.c:347 [inline]
__do_sys_fallocate fs/open.c:355 [inline]
__se_sys_fallocate fs/open.c:353 [inline]
__x64_sys_fallocate+0xbd/0x100 fs/open.c:353
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root cause is race condition as below:
- since it tries to remount rw filesystem, so that do_remount won't
call sb_prepare_remount_readonly to block fallocate, there may be race
condition in between remount and fallocate.
- in f2fs_remount(), default_options() will reset mount option to default
one, and then update it based on result of parse_options(), so there is
a hole which race condition can happen.
Thread A Thread B
- f2fs_fill_super
- parse_options
- clear_opt(READ_EXTENT_CACHE)
- f2fs_remount
- default_options
- set_opt(READ_EXTENT_CACHE)
- f2fs_fallocate
- f2fs_insert_range
- f2fs_drop_extent_tree
- __drop_extent_tree
- __may_extent_tree
- test_opt(READ_EXTENT_CACHE) return true
- write_lock(&et->lock) access NULL pointer
- parse_options
- clear_opt(READ_EXTENT_CACHE)
In the Linux kernel, the following vulnerability has been resolved:
PCI/ASPM: Disable ASPM on MFD function removal to avoid use-after-free
Struct pcie_link_state->downstream is a pointer to the pci_dev of function
0. Previously we retained that pointer when removing function 0, and
subsequent ASPM policy changes dereferenced it, resulting in a
use-after-free warning from KASAN, e.g.:
# echo 1 > /sys/bus/pci/devices/0000:03:00.0/remove
# echo powersave > /sys/module/pcie_aspm/parameters/policy
BUG: KASAN: slab-use-after-free in pcie_config_aspm_link+0x42d/0x500
Call Trace:
kasan_report+0xae/0xe0
pcie_config_aspm_link+0x42d/0x500
pcie_aspm_set_policy+0x8e/0x1a0
param_attr_store+0x162/0x2c0
module_attr_store+0x3e/0x80
PCIe spec r6.0, sec 7.5.3.7, recommends that software program the same ASPM
Control value in all functions of multi-function devices.
Disable ASPM and free the pcie_link_state when any child function is
removed so we can discard the dangling pcie_link_state->downstream pointer
and maintain the same ASPM Control configuration for all functions.
[bhelgaas: commit log and comment]
In the Linux kernel, the following vulnerability has been resolved:
net: qrtr: Fix a refcount bug in qrtr_recvmsg()
Syzbot reported a bug as following:
refcount_t: addition on 0; use-after-free.
...
RIP: 0010:refcount_warn_saturate+0x17c/0x1f0 lib/refcount.c:25
...
Call Trace:
<TASK>
__refcount_add include/linux/refcount.h:199 [inline]
__refcount_inc include/linux/refcount.h:250 [inline]
refcount_inc include/linux/refcount.h:267 [inline]
kref_get include/linux/kref.h:45 [inline]
qrtr_node_acquire net/qrtr/af_qrtr.c:202 [inline]
qrtr_node_lookup net/qrtr/af_qrtr.c:398 [inline]
qrtr_send_resume_tx net/qrtr/af_qrtr.c:1003 [inline]
qrtr_recvmsg+0x85f/0x990 net/qrtr/af_qrtr.c:1070
sock_recvmsg_nosec net/socket.c:1017 [inline]
sock_recvmsg+0xe2/0x160 net/socket.c:1038
qrtr_ns_worker+0x170/0x1700 net/qrtr/ns.c:688
process_one_work+0x991/0x15c0 kernel/workqueue.c:2390
worker_thread+0x669/0x1090 kernel/workqueue.c:2537
It occurs in the concurrent scenario of qrtr_recvmsg() and
qrtr_endpoint_unregister() as following:
cpu0 cpu1
qrtr_recvmsg qrtr_endpoint_unregister
qrtr_send_resume_tx qrtr_node_release
qrtr_node_lookup mutex_lock(&qrtr_node_lock)
spin_lock_irqsave(&qrtr_nodes_lock, ) refcount_dec_and_test(&node->ref) [node->ref == 0]
radix_tree_lookup [node != NULL] __qrtr_node_release
qrtr_node_acquire spin_lock_irqsave(&qrtr_nodes_lock, )
kref_get(&node->ref) [WARNING] ...
mutex_unlock(&qrtr_node_lock)
Use qrtr_node_lock to protect qrtr_node_lookup() implementation, this
is actually improving the protection of node reference.
In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: fix bulk_move corruption when adding a entry
When the resource is the first in the bulk_move range, adding it again
(thus moving it to the tail) will corrupt the list since the first
pointer is not moved. This eventually lead to null pointer deref in
ttm_lru_bulk_move_del()
In the Linux kernel, the following vulnerability has been resolved:
mfd: arizona: Use pm_runtime_resume_and_get() to prevent refcnt leak
In arizona_clk32k_enable(), we should use pm_runtime_resume_and_get()
as pm_runtime_get_sync() will increase the refcnt even when it
returns an error.
In the Linux kernel, the following vulnerability has been resolved:
ice: Block switchdev mode when ADQ is active and vice versa
ADQ and switchdev are not supported simultaneously. Enabling both at the
same time can result in nullptr dereference.
To prevent this, check if ADQ is active when changing devlink mode to
switchdev mode, and check if switchdev is active when enabling ADQ.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix sysfs interface lifetime
The current nilfs2 sysfs support has issues with the timing of creation
and deletion of sysfs entries, potentially leading to null pointer
dereferences, use-after-free, and lockdep warnings.
Some of the sysfs attributes for nilfs2 per-filesystem instance refer to
metadata file "cpfile", "sufile", or "dat", but
nilfs_sysfs_create_device_group that creates those attributes is executed
before the inodes for these metadata files are loaded, and
nilfs_sysfs_delete_device_group which deletes these sysfs entries is
called after releasing their metadata file inodes.
Therefore, access to some of these sysfs attributes may occur outside of
the lifetime of these metadata files, resulting in inode NULL pointer
dereferences or use-after-free.
In addition, the call to nilfs_sysfs_create_device_group() is made during
the locking period of the semaphore "ns_sem" of nilfs object, so the
shrinker call caused by the memory allocation for the sysfs entries, may
derive lock dependencies "ns_sem" -> (shrinker) -> "locks acquired in
nilfs_evict_inode()".
Since nilfs2 may acquire "ns_sem" deep in the call stack holding other
locks via its error handler __nilfs_error(), this causes lockdep to report
circular locking. This is a false positive and no circular locking
actually occurs as no inodes exist yet when
nilfs_sysfs_create_device_group() is called. Fortunately, the lockdep
warnings can be resolved by simply moving the call to
nilfs_sysfs_create_device_group() out of "ns_sem".
This fixes these sysfs issues by revising where the device's sysfs
interface is created/deleted and keeping its lifetime within the lifetime
of the metadata files above.
In the Linux kernel, the following vulnerability has been resolved:
x86/MCE: Always save CS register on AMD Zen IF Poison errors
The Instruction Fetch (IF) units on current AMD Zen-based systems do not
guarantee a synchronous #MC is delivered for poison consumption errors.
Therefore, MCG_STATUS[EIPV|RIPV] will not be set. However, the
microarchitecture does guarantee that the exception is delivered within
the same context. In other words, the exact rIP is not known, but the
context is known to not have changed.
There is no architecturally-defined method to determine this behavior.
The Code Segment (CS) register is always valid on such IF unit poison
errors regardless of the value of MCG_STATUS[EIPV|RIPV].
Add a quirk to save the CS register for poison consumption from the IF
unit banks.
This is needed to properly determine the context of the error.
Otherwise, the severity grading function will assume the context is
IN_KERNEL due to the m->cs value being 0 (the initialized value). This
leads to unnecessary kernel panics on data poison errors due to the
kernel believing the poison consumption occurred in kernel context.
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Handle cameras with invalid descriptors
If the source entity does not contain any pads, do not create a link.
In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix possible memory leak if device_add() fails
If device_add() returns error, the name allocated by dev_set_name() needs
be freed. As the comment of device_add() says, put_device() should be used
to give up the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanp().
In the Linux kernel, the following vulnerability has been resolved:
cassini: Fix a memory leak in the error handling path of cas_init_one()
cas_saturn_firmware_init() allocates some memory using vmalloc(). This
memory is freed in the .remove() function but not it the error handling
path of the probe.
Add the missing vfree() to avoid a memory leak, should an error occur.
In the Linux kernel, the following vulnerability has been resolved:
remoteproc: imx_dsp_rproc: Add custom memory copy implementation for i.MX DSP Cores
The IRAM is part of the HiFi DSP.
According to hardware specification only 32-bits write are allowed
otherwise we get a Kernel panic.
Therefore add a custom memory copy and memset functions to deal with
the above restriction.
In the Linux kernel, the following vulnerability has been resolved:
firewire: net: fix use after free in fwnet_finish_incoming_packet()
The netif_rx() function frees the skb so we can't dereference it to
save the skb->len.
In the Linux kernel, the following vulnerability has been resolved:
scsi: ses: Handle enclosure with just a primary component gracefully
This reverts commit 3fe97ff3d949 ("scsi: ses: Don't attach if enclosure
has no components") and introduces proper handling of case where there are
no detected secondary components, but primary component (enumerated in
num_enclosures) does exist. That fix was originally proposed by Ding Hui
<dinghui@sangfor.com.cn>.
Completely ignoring devices that have one primary enclosure and no
secondary one results in ses_intf_add() bailing completely
scsi 2:0:0:254: enclosure has no enumerated components
scsi 2:0:0:254: Failed to bind enclosure -12ven in valid configurations such
even on valid configurations with 1 primary and 0 secondary enclosures as
below:
# sg_ses /dev/sg0
3PARdata SES 3321
Supported diagnostic pages:
Supported Diagnostic Pages [sdp] [0x0]
Configuration (SES) [cf] [0x1]
Short Enclosure Status (SES) [ses] [0x8]
# sg_ses -p cf /dev/sg0
3PARdata SES 3321
Configuration diagnostic page:
number of secondary subenclosures: 0
generation code: 0x0
enclosure descriptor list
Subenclosure identifier: 0 [primary]
relative ES process id: 0, number of ES processes: 1
number of type descriptor headers: 1
enclosure logical identifier (hex): 20000002ac02068d
enclosure vendor: 3PARdata product: VV rev: 3321
type descriptor header and text list
Element type: Unspecified, subenclosure id: 0
number of possible elements: 1
The changelog for the original fix follows
=====
We can get a crash when disconnecting the iSCSI session,
the call trace like this:
[ffff00002a00fb70] kfree at ffff00000830e224
[ffff00002a00fba0] ses_intf_remove at ffff000001f200e4
[ffff00002a00fbd0] device_del at ffff0000086b6a98
[ffff00002a00fc50] device_unregister at ffff0000086b6d58
[ffff00002a00fc70] __scsi_remove_device at ffff00000870608c
[ffff00002a00fca0] scsi_remove_device at ffff000008706134
[ffff00002a00fcc0] __scsi_remove_target at ffff0000087062e4
[ffff00002a00fd10] scsi_remove_target at ffff0000087064c0
[ffff00002a00fd70] __iscsi_unbind_session at ffff000001c872c4
[ffff00002a00fdb0] process_one_work at ffff00000810f35c
[ffff00002a00fe00] worker_thread at ffff00000810f648
[ffff00002a00fe70] kthread at ffff000008116e98
In ses_intf_add, components count could be 0, and kcalloc 0 size scomp,
but not saved in edev->component[i].scratch
In this situation, edev->component[0].scratch is an invalid pointer,
when kfree it in ses_intf_remove_enclosure, a crash like above would happen
The call trace also could be other random cases when kfree cannot catch
the invalid pointer
We should not use edev->component[] array when the components count is 0
We also need check index when use edev->component[] array in
ses_enclosure_data_process
=====
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: dma: fix memory leak running mt76_dma_tx_cleanup
Fix device unregister memory leak and alway cleanup all configured
rx queues in mt76_dma_tx_cleanup routine.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't check PageError in __extent_writepage
__extent_writepage currenly sets PageError whenever any error happens,
and the also checks for PageError to decide if to call error handling.
This leads to very unclear responsibility for cleaning up on errors.
In the VM and generic writeback helpers the basic idea is that once
I/O is fired off all error handling responsibility is delegated to the
end I/O handler. But if that end I/O handler sets the PageError bit,
and the submitter checks it, the bit could in some cases leak into the
submission context for fast enough I/O.
Fix this by simply not checking PageError and just using the local
ret variable to check for submission errors. This also fundamentally
solves the long problem documented in a comment in __extent_writepage
by never leaking the error bit into the submission context.
In the Linux kernel, the following vulnerability has been resolved:
powercap: arm_scmi: Remove recursion while parsing zones
Powercap zones can be defined as arranged in a hierarchy of trees and when
registering a zone with powercap_register_zone(), the kernel powercap
subsystem expects this to happen starting from the root zones down to the
leaves; on the other side, de-registration by powercap_deregister_zone()
must begin from the leaf zones.
Available SCMI powercap zones are retrieved dynamically from the platform
at probe time and, while any defined hierarchy between the zones is
described properly in the zones descriptor, the platform returns the
availables zones with no particular well-defined order: as a consequence,
the trees possibly composing the hierarchy of zones have to be somehow
walked properly to register the retrieved zones from the root.
Currently the ARM SCMI Powercap driver walks the zones using a recursive
algorithm; this approach, even though correct and tested can lead to kernel
stack overflow when processing a returned hierarchy of zones composed by
particularly high trees.
Avoid possible kernel stack overflow by substituting the recursive approach
with an iterative one supported by a dynamically allocated stack-like data
structure.
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix warning and UAF when destroy the MR list
If the MR allocate failed, the MR recovery work not initialized
and list not cleared. Then will be warning and UAF when release
the MR:
WARNING: CPU: 4 PID: 824 at kernel/workqueue.c:3066 __flush_work.isra.0+0xf7/0x110
CPU: 4 PID: 824 Comm: mount.cifs Not tainted 6.1.0-rc5+ #82
RIP: 0010:__flush_work.isra.0+0xf7/0x110
Call Trace:
<TASK>
__cancel_work_timer+0x2ba/0x2e0
smbd_destroy+0x4e1/0x990
_smbd_get_connection+0x1cbd/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
BUG: KASAN: use-after-free in smbd_destroy+0x4fc/0x990
Read of size 8 at addr ffff88810b156a08 by task mount.cifs/824
CPU: 4 PID: 824 Comm: mount.cifs Tainted: G W 6.1.0-rc5+ #82
Call Trace:
dump_stack_lvl+0x34/0x44
print_report+0x171/0x472
kasan_report+0xad/0x130
smbd_destroy+0x4fc/0x990
_smbd_get_connection+0x1cbd/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Allocated by task 824:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0x7a/0x90
_smbd_get_connection+0x1b6f/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 824:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x143/0x1b0
__kmem_cache_free+0xc8/0x330
_smbd_get_connection+0x1c6a/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Let's initialize the MR recovery work before MR allocate to prevent
the warning, remove the MRs from the list to prevent the UAF.
In the Linux kernel, the following vulnerability has been resolved:
xsk: Fix xsk_diag use-after-free error during socket cleanup
Fix a use-after-free error that is possible if the xsk_diag interface
is used after the socket has been unbound from the device. This can
happen either due to the socket being closed or the device
disappearing. In the early days of AF_XDP, the way we tested that a
socket was not bound to a device was to simply check if the netdevice
pointer in the xsk socket structure was NULL. Later, a better system
was introduced by having an explicit state variable in the xsk socket
struct. For example, the state of a socket that is on the way to being
closed and has been unbound from the device is XSK_UNBOUND.
The commit in the Fixes tag below deleted the old way of signalling
that a socket is unbound, setting dev to NULL. This in the belief that
all code using the old way had been exterminated. That was
unfortunately not true as the xsk diagnostics code was still using the
old way and thus does not work as intended when a socket is going
down. Fix this by introducing a test against the state variable. If
the socket is in the state XSK_UNBOUND, simply abort the diagnostic's
netlink operation.
In the Linux kernel, the following vulnerability has been resolved:
media: platform: mediatek: vpu: fix NULL ptr dereference
If pdev is NULL, then it is still dereferenced.
This fixes this smatch warning:
drivers/media/platform/mediatek/vpu/mtk_vpu.c:570 vpu_load_firmware() warn: address of NULL pointer 'pdev'
In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: fix of_iomap memory leak
Smatch reports:
drivers/clk/mediatek/clk-mtk.c:583 mtk_clk_simple_probe() warn:
'base' from of_iomap() not released on lines: 496.
This problem was also found in linux-next. In mtk_clk_simple_probe(),
base is not released when handling errors
if clk_data is not existed, which may cause a leak.
So free_base should be added here to release base.
In the Linux kernel, the following vulnerability has been resolved:
objtool: Fix memory leak in create_static_call_sections()
strdup() allocates memory for key_name. We need to release the memory in
the following error paths. Add free() to avoid memory leak.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fw: fix memory leak in debugfs
Fix a memory leak that occurs when reading the fw_info
file all the way, since we return NULL indicating no
more data, but don't free the status tracking object.
In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: Reinit blkg_iostat_set after clearing in blkcg_reset_stats()
When blkg_alloc() is called to allocate a blkcg_gq structure
with the associated blkg_iostat_set's, there are 2 fields within
blkg_iostat_set that requires proper initialization - blkg & sync.
The former field was introduced by commit 3b8cc6298724 ("blk-cgroup:
Optimize blkcg_rstat_flush()") while the later one was introduced by
commit f73316482977 ("blk-cgroup: reimplement basic IO stats using
cgroup rstat").
Unfortunately those fields in the blkg_iostat_set's are not properly
re-initialized when they are cleared in v1's blkcg_reset_stats(). This
can lead to a kernel panic due to NULL pointer access of the blkg
pointer. The missing initialization of sync is less problematic and
can be a problem in a debug kernel due to missing lockdep initialization.
Fix these problems by re-initializing them after memory clearing.
In the Linux kernel, the following vulnerability has been resolved:
ntfs: Fix panic about slab-out-of-bounds caused by ntfs_listxattr()
Here is a BUG report from syzbot:
BUG: KASAN: slab-out-of-bounds in ntfs_list_ea fs/ntfs3/xattr.c:191 [inline]
BUG: KASAN: slab-out-of-bounds in ntfs_listxattr+0x401/0x570 fs/ntfs3/xattr.c:710
Read of size 1 at addr ffff888021acaf3d by task syz-executor128/3632
Call Trace:
ntfs_list_ea fs/ntfs3/xattr.c:191 [inline]
ntfs_listxattr+0x401/0x570 fs/ntfs3/xattr.c:710
vfs_listxattr fs/xattr.c:457 [inline]
listxattr+0x293/0x2d0 fs/xattr.c:804
Fix the logic of ea_all iteration. When the ea->name_len is 0,
return immediately, or Add2Ptr() would visit invalid memory
in the next loop.
[almaz.alexandrovich@paragon-software.com: lines of the patch have changed]
In the Linux kernel, the following vulnerability has been resolved:
rcu: Protect rcu_print_task_exp_stall() ->exp_tasks access
For kernels built with CONFIG_PREEMPT_RCU=y, the following scenario can
result in a NULL-pointer dereference:
CPU1 CPU2
rcu_preempt_deferred_qs_irqrestore rcu_print_task_exp_stall
if (special.b.blocked) READ_ONCE(rnp->exp_tasks) != NULL
raw_spin_lock_rcu_node
np = rcu_next_node_entry(t, rnp)
if (&t->rcu_node_entry == rnp->exp_tasks)
WRITE_ONCE(rnp->exp_tasks, np)
....
raw_spin_unlock_irqrestore_rcu_node
raw_spin_lock_irqsave_rcu_node
t = list_entry(rnp->exp_tasks->prev,
struct task_struct, rcu_node_entry)
(if rnp->exp_tasks is NULL, this
will dereference a NULL pointer)
The problem is that CPU2 accesses the rcu_node structure's->exp_tasks
field without holding the rcu_node structure's ->lock and CPU2 did
not observe CPU1's change to rcu_node structure's ->exp_tasks in time.
Therefore, if CPU1 sets rcu_node structure's->exp_tasks pointer to NULL,
then CPU2 might dereference that NULL pointer.
This commit therefore holds the rcu_node structure's ->lock while
accessing that structure's->exp_tasks field.
[ paulmck: Apply Frederic Weisbecker feedback. ]
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sysfs: Fix attempting to call device_add multiple times
device_add shall not be called multiple times as stated in its
documentation:
'Do not call this routine or device_register() more than once for
any device structure'
Syzkaller reports a bug as follows [1]:
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:33!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
[...]
Call Trace:
<TASK>
__list_add include/linux/list.h:69 [inline]
list_add_tail include/linux/list.h:102 [inline]
kobj_kset_join lib/kobject.c:164 [inline]
kobject_add_internal+0x18f/0x8f0 lib/kobject.c:214
kobject_add_varg lib/kobject.c:358 [inline]
kobject_add+0x150/0x1c0 lib/kobject.c:410
device_add+0x368/0x1e90 drivers/base/core.c:3452
hci_conn_add_sysfs+0x9b/0x1b0 net/bluetooth/hci_sysfs.c:53
hci_le_cis_estabilished_evt+0x57c/0xae0 net/bluetooth/hci_event.c:6799
hci_le_meta_evt+0x2b8/0x510 net/bluetooth/hci_event.c:7110
hci_event_func net/bluetooth/hci_event.c:7440 [inline]
hci_event_packet+0x63d/0xfd0 net/bluetooth/hci_event.c:7495
hci_rx_work+0xae7/0x1230 net/bluetooth/hci_core.c:4007
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: mhi: fix potential memory leak in ath11k_mhi_register()
mhi_alloc_controller() allocates a memory space for mhi_ctrl. When gets
some error, mhi_ctrl should be freed with mhi_free_controller(). But
when ath11k_mhi_read_addr_from_dt() fails, the function returns without
calling mhi_free_controller(), which will lead to a memory leak.
We can fix it by calling mhi_free_controller() when
ath11k_mhi_read_addr_from_dt() fails.
In the Linux kernel, the following vulnerability has been resolved:
drm/panfrost: Fix GEM handle creation ref-counting
panfrost_gem_create_with_handle() previously returned a BO but with the
only reference being from the handle, which user space could in theory
guess and release, causing a use-after-free. Additionally if the call to
panfrost_gem_mapping_get() in panfrost_ioctl_create_bo() failed then
a(nother) reference on the BO was dropped.
The _create_with_handle() is a problematic pattern, so ditch it and
instead create the handle in panfrost_ioctl_create_bo(). If the call to
panfrost_gem_mapping_get() fails then this means that user space has
indeed gone behind our back and freed the handle. In which case just
return an error code.
In the Linux kernel, the following vulnerability has been resolved:
irqchip/wpcm450: Fix memory leak in wpcm450_aic_of_init()
If of_iomap() failed, 'aic' should be freed before return. Otherwise
there is a memory leak.
In the Linux kernel, the following vulnerability has been resolved:
parisc: led: Fix potential null-ptr-deref in start_task()
start_task() calls create_singlethread_workqueue() and not checked the
ret value, which may return NULL. And a null-ptr-deref may happen:
start_task()
create_singlethread_workqueue() # failed, led_wq is NULL
queue_delayed_work()
queue_delayed_work_on()
__queue_delayed_work() # warning here, but continue
__queue_work() # access wq->flags, null-ptr-deref
Check the ret value and return -ENOMEM if it is NULL.
In the Linux kernel, the following vulnerability has been resolved:
scsi: fcoe: Fix transport not deattached when fcoe_if_init() fails
fcoe_init() calls fcoe_transport_attach(&fcoe_sw_transport), but when
fcoe_if_init() fails, &fcoe_sw_transport is not detached and leaves freed
&fcoe_sw_transport on fcoe_transports list. This causes panic when
reinserting module.
BUG: unable to handle page fault for address: fffffbfff82e2213
RIP: 0010:fcoe_transport_attach+0xe1/0x230 [libfcoe]
Call Trace:
<TASK>
do_one_initcall+0xd0/0x4e0
load_module+0x5eee/0x7210
...
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix use-after-free
We've already freed the assoc_data at this point, so need
to use another copy of the AP (MLD) address instead.
In the Linux kernel, the following vulnerability has been resolved:
drm: bridge: adv7511: unregister cec i2c device after cec adapter
cec_unregister_adapter() assumes that the underlying adapter ops are
callable. For example, if the CEC adapter currently has a valid physical
address, then the unregistration procedure will invalidate the physical
address by setting it to f.f.f.f. Whence the following kernel oops
observed after removing the adv7511 module:
Unable to handle kernel execution of user memory at virtual address 0000000000000000
Internal error: Oops: 86000004 [#1] PREEMPT_RT SMP
Call trace:
0x0
adv7511_cec_adap_log_addr+0x1ac/0x1c8 [adv7511]
cec_adap_unconfigure+0x44/0x90 [cec]
__cec_s_phys_addr.part.0+0x68/0x230 [cec]
__cec_s_phys_addr+0x40/0x50 [cec]
cec_unregister_adapter+0xb4/0x118 [cec]
adv7511_remove+0x60/0x90 [adv7511]
i2c_device_remove+0x34/0xe0
device_release_driver_internal+0x114/0x1f0
driver_detach+0x54/0xe0
bus_remove_driver+0x60/0xd8
driver_unregister+0x34/0x60
i2c_del_driver+0x2c/0x68
adv7511_exit+0x1c/0x67c [adv7511]
__arm64_sys_delete_module+0x154/0x288
invoke_syscall+0x48/0x100
el0_svc_common.constprop.0+0x48/0xe8
do_el0_svc+0x28/0x88
el0_svc+0x1c/0x50
el0t_64_sync_handler+0xa8/0xb0
el0t_64_sync+0x15c/0x160
Code: bad PC value
---[ end trace 0000000000000000 ]---
Protect against this scenario by unregistering i2c_cec after
unregistering the CEC adapter. Duly disable the CEC clock afterwards
too.
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix error code path in acpi_ds_call_control_method()
A use-after-free in acpi_ps_parse_aml() after a failing invocaion of
acpi_ds_call_control_method() is reported by KASAN [1] and code
inspection reveals that next_walk_state pushed to the thread by
acpi_ds_create_walk_state() is freed on errors, but it is not popped
from the thread beforehand. Thus acpi_ds_get_current_walk_state()
called by acpi_ps_parse_aml() subsequently returns it as the new
walk state which is incorrect.
To address this, make acpi_ds_call_control_method() call
acpi_ds_pop_walk_state() to pop next_walk_state from the thread before
returning an error.
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv2 READ
Since before the git era, NFSD has conserved the number of pages
held by each nfsd thread by combining the RPC receive and send
buffers into a single array of pages. This works because there are
no cases where an operation needs a large RPC Call message and a
large RPC Reply at the same time.
Once an RPC Call has been received, svc_process() updates
svc_rqst::rq_res to describe the part of rq_pages that can be
used for constructing the Reply. This means that the send buffer
(rq_res) shrinks when the received RPC record containing the RPC
Call is large.
A client can force this shrinkage on TCP by sending a correctly-
formed RPC Call header contained in an RPC record that is
excessively large. The full maximum payload size cannot be
constructed in that case.
In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/qm - increase the memory of local variables
Increase the buffer to prevent stack overflow by fuzz test. The maximum
length of the qos configuration buffer is 256 bytes. Currently, the value
of the 'val buffer' is only 32 bytes. The sscanf does not check the dest
memory length. So the 'val buffer' may stack overflow.
In the Linux kernel, the following vulnerability has been resolved:
net/tunnel: wait until all sk_user_data reader finish before releasing the sock
There is a race condition in vxlan that when deleting a vxlan device
during receiving packets, there is a possibility that the sock is
released after getting vxlan_sock vs from sk_user_data. Then in
later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got
NULL pointer dereference. e.g.
#0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757
#1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d
#2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48
#3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b
#4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb
#5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542
#6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62
[exception RIP: vxlan_ecn_decapsulate+0x3b]
RIP: ffffffffc1014e7b RSP: ffffa25ec6978cb0 RFLAGS: 00010246
RAX: 0000000000000008 RBX: ffff8aa000888000 RCX: 0000000000000000
RDX: 000000000000000e RSI: ffff8a9fc7ab803e RDI: ffff8a9fd1168700
RBP: ffff8a9fc7ab803e R8: 0000000000700000 R9: 00000000000010ae
R10: ffff8a9fcb748980 R11: 0000000000000000 R12: ffff8a9fd1168700
R13: ffff8aa000888000 R14: 00000000002a0000 R15: 00000000000010ae
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan]
#8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507
#9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45
#10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807
#11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951
#12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde
#13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b
#14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139
#15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a
#16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3
#17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca
#18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3
Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh
Fix this by waiting for all sk_user_data reader to finish before
releasing the sock.