CVE Database

Search and browse vulnerability records from NVD

Showing 50 of 30474 CVEs

CVE ID Severity Description EPSS Published
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: orangefs: Fix kmemleak in orangefs_sysfs_init() When insert and remove the orangefs module, there are kobjects memory leaked as below: unreferenced object 0xffff88810f95af00 (size 64): comm "insmod", pid 783, jiffies 4294813439 (age 65.512s) hex dump (first 32 bytes): a0 83 af 01 81 88 ff ff 08 af 95 0f 81 88 ff ff ................ 08 af 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000031ab7788>] kmalloc_trace+0x27/0xa0 [<000000005a6e4dfe>] orangefs_sysfs_init+0x42/0x3a0 [<00000000722645ca>] 0xffffffffa02780fe [<000000004232d9f7>] do_one_initcall+0x87/0x2a0 [<0000000054f22384>] do_init_module+0xdf/0x320 [<000000003263bdea>] load_module+0x2f98/0x3330 [<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0 [<00000000250ae02b>] do_syscall_64+0x35/0x80 [<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 unreferenced object 0xffff88810f95ae80 (size 64): comm "insmod", pid 783, jiffies 4294813439 (age 65.512s) hex dump (first 32 bytes): c8 90 0f 02 81 88 ff ff 88 ae 95 0f 81 88 ff ff ................ 88 ae 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000031ab7788>] kmalloc_trace+0x27/0xa0 [<000000001a4841fa>] orangefs_sysfs_init+0xc7/0x3a0 [<00000000722645ca>] 0xffffffffa02780fe [<000000004232d9f7>] do_one_initcall+0x87/0x2a0 [<0000000054f22384>] do_init_module+0xdf/0x320 [<000000003263bdea>] load_module+0x2f98/0x3330 [<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0 [<00000000250ae02b>] do_syscall_64+0x35/0x80 [<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 unreferenced object 0xffff88810f95ae00 (size 64): comm "insmod", pid 783, jiffies 4294813440 (age 65.511s) hex dump (first 32 bytes): 60 87 a1 00 81 88 ff ff 08 ae 95 0f 81 88 ff ff `............... 08 ae 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000031ab7788>] kmalloc_trace+0x27/0xa0 [<000000005915e797>] orangefs_sysfs_init+0x12b/0x3a0 [<00000000722645ca>] 0xffffffffa02780fe [<000000004232d9f7>] do_one_initcall+0x87/0x2a0 [<0000000054f22384>] do_init_module+0xdf/0x320 [<000000003263bdea>] load_module+0x2f98/0x3330 [<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0 [<00000000250ae02b>] do_syscall_64+0x35/0x80 [<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 unreferenced object 0xffff88810f95ad80 (size 64): comm "insmod", pid 783, jiffies 4294813440 (age 65.511s) hex dump (first 32 bytes): 78 90 0f 02 81 88 ff ff 88 ad 95 0f 81 88 ff ff x............... 88 ad 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000031ab7788>] kmalloc_trace+0x27/0xa0 [<000000007a14eb35>] orangefs_sysfs_init+0x1ac/0x3a0 [<00000000722645ca>] 0xffffffffa02780fe [<000000004232d9f7>] do_one_initcall+0x87/0x2a0 [<0000000054f22384>] do_init_module+0xdf/0x320 [<000000003263bdea>] load_module+0x2f98/0x3330 [<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0 [<00000000250ae02b>] do_syscall_64+0x35/0x80 [<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 unreferenced object 0xffff88810f95ac00 (size 64): comm "insmod", pid 783, jiffies 4294813440 (age 65.531s) hex dump (first 32 bytes): e0 ff 67 02 81 88 ff ff 08 ac 95 0f 81 88 ff ff ..g............. 08 ac 95 0f 81 88 ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000031ab7788>] kmalloc_trace+0x27/0xa0 [<000000001f38adcb>] orangefs_sysfs_init+0x291/0x3a0 [<00000000722645ca>] 0xffffffffa02780fe [<000000004232d9f7>] do_one_initcall+0x87/0x2a0 [<0000000054f22384>] do_init_module+0xdf/0x320 [<000000003263bdea>] load_module+0x2f98/0x3330 [<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0 [<00000000250ae02b>] do_syscall_64+0x35/ ---truncated---

0.0% 2025-09-15
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: ata: ahci: Match EM_MAX_SLOTS with SATA_PMP_MAX_PORTS UBSAN complains about array-index-out-of-bounds: [ 1.980703] kernel: UBSAN: array-index-out-of-bounds in /build/linux-9H675w/linux-5.15.0/drivers/ata/libahci.c:968:41 [ 1.980709] kernel: index 15 is out of range for type 'ahci_em_priv [8]' [ 1.980713] kernel: CPU: 0 PID: 209 Comm: scsi_eh_8 Not tainted 5.15.0-25-generic #25-Ubuntu [ 1.980716] kernel: Hardware name: System manufacturer System Product Name/P5Q3, BIOS 1102 06/11/2010 [ 1.980718] kernel: Call Trace: [ 1.980721] kernel: <TASK> [ 1.980723] kernel: show_stack+0x52/0x58 [ 1.980729] kernel: dump_stack_lvl+0x4a/0x5f [ 1.980734] kernel: dump_stack+0x10/0x12 [ 1.980736] kernel: ubsan_epilogue+0x9/0x45 [ 1.980739] kernel: __ubsan_handle_out_of_bounds.cold+0x44/0x49 [ 1.980742] kernel: ahci_qc_issue+0x166/0x170 [libahci] [ 1.980748] kernel: ata_qc_issue+0x135/0x240 [ 1.980752] kernel: ata_exec_internal_sg+0x2c4/0x580 [ 1.980754] kernel: ? vprintk_default+0x1d/0x20 [ 1.980759] kernel: ata_exec_internal+0x67/0xa0 [ 1.980762] kernel: sata_pmp_read+0x8d/0xc0 [ 1.980765] kernel: sata_pmp_read_gscr+0x3c/0x90 [ 1.980768] kernel: sata_pmp_attach+0x8b/0x310 [ 1.980771] kernel: ata_eh_revalidate_and_attach+0x28c/0x4b0 [ 1.980775] kernel: ata_eh_recover+0x6b6/0xb30 [ 1.980778] kernel: ? ahci_do_hardreset+0x180/0x180 [libahci] [ 1.980783] kernel: ? ahci_stop_engine+0xb0/0xb0 [libahci] [ 1.980787] kernel: ? ahci_do_softreset+0x290/0x290 [libahci] [ 1.980792] kernel: ? trace_event_raw_event_ata_eh_link_autopsy_qc+0xe0/0xe0 [ 1.980795] kernel: sata_pmp_eh_recover.isra.0+0x214/0x560 [ 1.980799] kernel: sata_pmp_error_handler+0x23/0x40 [ 1.980802] kernel: ahci_error_handler+0x43/0x80 [libahci] [ 1.980806] kernel: ata_scsi_port_error_handler+0x2b1/0x600 [ 1.980810] kernel: ata_scsi_error+0x9c/0xd0 [ 1.980813] kernel: scsi_error_handler+0xa1/0x180 [ 1.980817] kernel: ? scsi_unjam_host+0x1c0/0x1c0 [ 1.980820] kernel: kthread+0x12a/0x150 [ 1.980823] kernel: ? set_kthread_struct+0x50/0x50 [ 1.980826] kernel: ret_from_fork+0x22/0x30 [ 1.980831] kernel: </TASK> This happens because sata_pmp_init_links() initialize link->pmp up to SATA_PMP_MAX_PORTS while em_priv is declared as 8 elements array. I can't find the maximum Enclosure Management ports specified in AHCI spec v1.3.1, but "12.2.1 LED message type" states that "Port Multiplier Information" can utilize 4 bits, which implies it can support up to 16 ports. Hence, use SATA_PMP_MAX_PORTS as EM_MAX_SLOTS to resolve the issue. BugLink: https://bugs.launchpad.net/bugs/1970074

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: nbd: Fix hung when signal interrupts nbd_start_device_ioctl() syzbot reported hung task [1]. The following program is a simplified version of the reproducer: int main(void) { int sv[2], fd; if (socketpair(AF_UNIX, SOCK_STREAM, 0, sv) < 0) return 1; if ((fd = open("/dev/nbd0", 0)) < 0) return 1; if (ioctl(fd, NBD_SET_SIZE_BLOCKS, 0x81) < 0) return 1; if (ioctl(fd, NBD_SET_SOCK, sv[0]) < 0) return 1; if (ioctl(fd, NBD_DO_IT) < 0) return 1; return 0; } When signal interrupt nbd_start_device_ioctl() waiting the condition atomic_read(&config->recv_threads) == 0, the task can hung because it waits the completion of the inflight IOs. This patch fixes the issue by clearing queue, not just shutdown, when signal interrupt nbd_start_device_ioctl().

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: erofs: fix order >= MAX_ORDER warning due to crafted negative i_size As syzbot reported [1], the root cause is that i_size field is a signed type, and negative i_size is also less than EROFS_BLKSIZ. As a consequence, it's handled as fast symlink unexpectedly. Let's fall back to the generic path to deal with such unusual i_size. [1] https://lore.kernel.org/r/000000000000ac8efa05e7feaa1f@google.com

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drivers: serial: jsm: fix some leaks in probe This error path needs to unwind instead of just returning directly.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: cxl: Fix refcount leak in cxl_calc_capp_routing of_get_next_parent() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. This function only calls of_node_put() in normal path, missing it in the error path. Add missing of_node_put() to avoid refcount leak.

0.0% 2025-09-15
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: ip6mr: fix UAF issue in ip6mr_sk_done() when addrconf_init_net() failed If the initialization fails in calling addrconf_init_net(), devconf_all is the pointer that has been released. Then ip6mr_sk_done() is called to release the net, accessing devconf->mc_forwarding directly causes invalid pointer access. The process is as follows: setup_net() ops_init() addrconf_init_net() all = kmemdup(...) ---> alloc "all" ... net->ipv6.devconf_all = all; __addrconf_sysctl_register() ---> failed ... kfree(all); ---> ipv6.devconf_all invalid ... ops_exit_list() ... ip6mr_sk_done() devconf = net->ipv6.devconf_all; //devconf is invalid pointer if (!devconf || !atomic_read(&devconf->mc_forwarding)) The following is the Call Trace information: BUG: KASAN: use-after-free in ip6mr_sk_done+0x112/0x3a0 Read of size 4 at addr ffff888075508e88 by task ip/14554 Call Trace: <TASK> dump_stack_lvl+0x8e/0xd1 print_report+0x155/0x454 kasan_report+0xba/0x1f0 kasan_check_range+0x35/0x1b0 ip6mr_sk_done+0x112/0x3a0 rawv6_close+0x48/0x70 inet_release+0x109/0x230 inet6_release+0x4c/0x70 sock_release+0x87/0x1b0 igmp6_net_exit+0x6b/0x170 ops_exit_list+0xb0/0x170 setup_net+0x7ac/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f7963322547 </TASK> Allocated by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0xa1/0xb0 __kmalloc_node_track_caller+0x4a/0xb0 kmemdup+0x28/0x60 addrconf_init_net+0x1be/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 14554: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x155/0x1b0 slab_free_freelist_hook+0x11b/0x220 __kmem_cache_free+0xa4/0x360 addrconf_init_net+0x623/0x840 ops_init+0xa5/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: media: xilinx: vipp: Fix refcount leak in xvip_graph_dma_init of_get_child_by_name() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: Add checks for devm_kcalloc As the devm_kcalloc may return NULL, the return value needs to be checked to avoid NULL poineter dereference.

0.0% 2025-09-15
7.1 HIGH

In the Linux kernel, the following vulnerability has been resolved: s390/cio: fix out-of-bounds access on cio_ignore free The channel-subsystem-driver scans for newly available devices whenever device-IDs are removed from the cio_ignore list using a command such as: echo free >/proc/cio_ignore Since an I/O device scan might interfer with running I/Os, commit 172da89ed0ea ("s390/cio: avoid excessive path-verification requests") introduced an optimization to exclude online devices from the scan. The newly added check for online devices incorrectly assumes that an I/O-subchannel's drvdata points to a struct io_subchannel_private. For devices that are bound to a non-default I/O subchannel driver, such as the vfio_ccw driver, this results in an out-of-bounds read access during each scan. Fix this by changing the scan logic to rely on a driver-independent online indication. For this we can use struct subchannel->config.ena, which is the driver's requested subchannel-enabled state. Since I/Os can only be started on enabled subchannels, this matches the intent of the original optimization of not scanning devices where I/O might be running.

0.0% 2025-09-15
7.1 HIGH

In the Linux kernel, the following vulnerability has been resolved: ext4: fix potential out of bound read in ext4_fc_replay_scan() For scan loop must ensure that at least EXT4_FC_TAG_BASE_LEN space. If remain space less than EXT4_FC_TAG_BASE_LEN which will lead to out of bound read when mounting corrupt file system image. ADD_RANGE/HEAD/TAIL is needed to add extra check when do journal scan, as this three tags will read data during scan, tag length couldn't less than data length which will read.

0.0% 2025-09-15
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: ASoC: sof_es8336: fix possible use-after-free in sof_es8336_remove() sof_es8336_remove() calls cancel_delayed_work(). However, that function does not wait until the work function finishes. This means that the callback function may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling cancel_delayed_work_sync(), which ensures that the work is properly cancelled, no longer running, and unable to re-schedule itself.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: mtd: core: fix possible resource leak in init_mtd() I got the error report while inject fault in init_mtd(): sysfs: cannot create duplicate filename '/devices/virtual/bdi/mtd-0' Call Trace: <TASK> dump_stack_lvl+0x67/0x83 sysfs_warn_dup+0x60/0x70 sysfs_create_dir_ns+0x109/0x120 kobject_add_internal+0xce/0x2f0 kobject_add+0x98/0x110 device_add+0x179/0xc00 device_create_groups_vargs+0xf4/0x100 device_create+0x7b/0xb0 bdi_register_va.part.13+0x58/0x2d0 bdi_register+0x9b/0xb0 init_mtd+0x62/0x171 [mtd] do_one_initcall+0x6c/0x3c0 do_init_module+0x58/0x222 load_module+0x268e/0x27d0 __do_sys_finit_module+0xd5/0x140 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> kobject_add_internal failed for mtd-0 with -EEXIST, don't try to register things with the same name in the same directory. Error registering mtd class or bdi: -17 If init_mtdchar() fails in init_mtd(), mtd_bdi will not be unregistered, as a result, we can't load the mtd module again, to fix this by calling bdi_unregister(mtd_bdi) after out_procfs label.

0.0% 2025-09-15
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix double release compute pasid If kfd_process_device_init_vm returns failure after vm is converted to compute vm and vm->pasid set to compute pasid, KFD will not take pdd->drm_file reference. As a result, drm close file handler maybe called to release the compute pasid before KFD process destroy worker to release the same pasid and set vm->pasid to zero, this generates below WARNING backtrace and NULL pointer access. Add helper amdgpu_amdkfd_gpuvm_set_vm_pasid and call it at the last step of kfd_process_device_init_vm, to ensure vm pasid is the original pasid if acquiring vm failed or is the compute pasid with pdd->drm_file reference taken to avoid double release same pasid. amdgpu: Failed to create process VM object ida_free called for id=32770 which is not allocated. WARNING: CPU: 57 PID: 72542 at ../lib/idr.c:522 ida_free+0x96/0x140 RIP: 0010:ida_free+0x96/0x140 Call Trace: amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu] amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu] drm_file_free.part.13+0x216/0x270 [drm] drm_close_helper.isra.14+0x60/0x70 [drm] drm_release+0x6e/0xf0 [drm] __fput+0xcc/0x280 ____fput+0xe/0x20 task_work_run+0x96/0xc0 do_exit+0x3d0/0xc10 BUG: kernel NULL pointer dereference, address: 0000000000000000 RIP: 0010:ida_free+0x76/0x140 Call Trace: amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu] amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu] drm_file_free.part.13+0x216/0x270 [drm] drm_close_helper.isra.14+0x60/0x70 [drm] drm_release+0x6e/0xf0 [drm] __fput+0xcc/0x280 ____fput+0xe/0x20 task_work_run+0x96/0xc0 do_exit+0x3d0/0xc10

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: lockd: set other missing fields when unlocking files vfs_lock_file() expects the struct file_lock to be fully initialised by the caller. Re-exported NFSv3 has been seen to Oops if the fl_file field is NULL.

0.0% 2025-09-15
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: iommu/omap: Fix buffer overflow in debugfs There are two issues here: 1) The "len" variable needs to be checked before the very first write. Otherwise if omap2_iommu_dump_ctx() with "bytes" less than 32 it is a buffer overflow. 2) The snprintf() function returns the number of bytes that *would* have been copied if there were enough space. But we want to know the number of bytes which were *actually* copied so use scnprintf() instead.

0.0% 2025-09-15
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix extent map use-after-free when handling missing device in read_one_chunk Store the error code before freeing the extent_map. Though it's reference counted structure, in that function it's the first and last allocation so this would lead to a potential use-after-free. The error can happen eg. when chunk is stored on a missing device and the degraded mount option is missing. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: md: Replace snprintf with scnprintf Current code produces a warning as shown below when total characters in the constituent block device names plus the slashes exceeds 200. snprintf() returns the number of characters generated from the given input, which could cause the expression “200 – len” to wrap around to a large positive number. Fix this by using scnprintf() instead, which returns the actual number of characters written into the buffer. [ 1513.267938] ------------[ cut here ]------------ [ 1513.267943] WARNING: CPU: 15 PID: 37247 at <snip>/lib/vsprintf.c:2509 vsnprintf+0x2c8/0x510 [ 1513.267944] Modules linked in: <snip> [ 1513.267969] CPU: 15 PID: 37247 Comm: mdadm Not tainted 5.4.0-1085-azure #90~18.04.1-Ubuntu [ 1513.267969] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022 [ 1513.267971] RIP: 0010:vsnprintf+0x2c8/0x510 <-snip-> [ 1513.267982] Call Trace: [ 1513.267986] snprintf+0x45/0x70 [ 1513.267990] ? disk_name+0x71/0xa0 [ 1513.267993] dump_zones+0x114/0x240 [raid0] [ 1513.267996] ? _cond_resched+0x19/0x40 [ 1513.267998] raid0_run+0x19e/0x270 [raid0] [ 1513.268000] md_run+0x5e0/0xc50 [ 1513.268003] ? security_capable+0x3f/0x60 [ 1513.268005] do_md_run+0x19/0x110 [ 1513.268006] md_ioctl+0x195e/0x1f90 [ 1513.268007] blkdev_ioctl+0x91f/0x9f0 [ 1513.268010] block_ioctl+0x3d/0x50 [ 1513.268012] do_vfs_ioctl+0xa9/0x640 [ 1513.268014] ? __fput+0x162/0x260 [ 1513.268016] ksys_ioctl+0x75/0x80 [ 1513.268017] __x64_sys_ioctl+0x1a/0x20 [ 1513.268019] do_syscall_64+0x5e/0x200 [ 1513.268021] entry_SYSCALL_64_after_hwframe+0x44/0xa9

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: slimbus: qcom-ngd: cleanup in probe error path Add proper error path in probe() to cleanup resources previously acquired/allocated to fix warnings visible during probe deferral: notifier callback qcom_slim_ngd_ssr_notify already registered WARNING: CPU: 6 PID: 70 at kernel/notifier.c:28 notifier_chain_register+0x5c/0x90 Modules linked in: CPU: 6 PID: 70 Comm: kworker/u16:1 Not tainted 6.0.0-rc3-next-20220830 #380 Call trace: notifier_chain_register+0x5c/0x90 srcu_notifier_chain_register+0x44/0x90 qcom_register_ssr_notifier+0x38/0x4c qcom_slim_ngd_ctrl_probe+0xd8/0x400 platform_probe+0x6c/0xe0 really_probe+0xbc/0x2d4 __driver_probe_device+0x78/0xe0 driver_probe_device+0x3c/0x12c __device_attach_driver+0xb8/0x120 bus_for_each_drv+0x78/0xd0 __device_attach+0xa8/0x1c0 device_initial_probe+0x18/0x24 bus_probe_device+0xa0/0xac deferred_probe_work_func+0x88/0xc0 process_one_work+0x1d4/0x320 worker_thread+0x2cc/0x44c kthread+0x110/0x114 ret_from_fork+0x10/0x20

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: verify the expected usb_endpoints are present The bug arises when a USB device claims to be an ATH9K but doesn't have the expected endpoints. (In this case there was an interrupt endpoint where the driver expected a bulk endpoint.) The kernel needs to be able to handle such devices without getting an internal error. usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 3 PID: 500 at drivers/usb/core/urb.c:493 usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Modules linked in: CPU: 3 PID: 500 Comm: kworker/3:2 Not tainted 5.10.135-syzkaller #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Workqueue: events request_firmware_work_func RIP: 0010:usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Call Trace: ath9k_hif_usb_alloc_rx_urbs drivers/net/wireless/ath/ath9k/hif_usb.c:908 [inline] ath9k_hif_usb_alloc_urbs+0x75e/0x1010 drivers/net/wireless/ath/ath9k/hif_usb.c:1019 ath9k_hif_usb_dev_init drivers/net/wireless/ath/ath9k/hif_usb.c:1109 [inline] ath9k_hif_usb_firmware_cb+0x142/0x530 drivers/net/wireless/ath/ath9k/hif_usb.c:1242 request_firmware_work_func+0x12e/0x240 drivers/base/firmware_loader/main.c:1097 process_one_work+0x9af/0x1600 kernel/workqueue.c:2279 worker_thread+0x61d/0x12f0 kernel/workqueue.c:2425 kthread+0x3b4/0x4a0 kernel/kthread.c:313 ret_from_fork+0x22/0x30 arch/x86/entry/entry_64.S:299 Found by Linux Verification Center (linuxtesting.org) with Syzkaller.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: UM: cpuinfo: Fix a warning for CONFIG_CPUMASK_OFFSTACK When CONFIG_CPUMASK_OFFSTACK and CONFIG_DEBUG_PER_CPU_MAPS is selected, cpu_max_bits_warn() generates a runtime warning similar as below while we show /proc/cpuinfo. Fix this by using nr_cpu_ids (the runtime limit) instead of NR_CPUS to iterate CPUs. [ 3.052463] ------------[ cut here ]------------ [ 3.059679] WARNING: CPU: 3 PID: 1 at include/linux/cpumask.h:108 show_cpuinfo+0x5e8/0x5f0 [ 3.070072] Modules linked in: efivarfs autofs4 [ 3.076257] CPU: 0 PID: 1 Comm: systemd Not tainted 5.19-rc5+ #1052 [ 3.099465] Stack : 9000000100157b08 9000000000f18530 9000000000cf846c 9000000100154000 [ 3.109127] 9000000100157a50 0000000000000000 9000000100157a58 9000000000ef7430 [ 3.118774] 90000001001578e8 0000000000000040 0000000000000020 ffffffffffffffff [ 3.128412] 0000000000aaaaaa 1ab25f00eec96a37 900000010021de80 900000000101c890 [ 3.138056] 0000000000000000 0000000000000000 0000000000000000 0000000000aaaaaa [ 3.147711] ffff8000339dc220 0000000000000001 0000000006ab4000 0000000000000000 [ 3.157364] 900000000101c998 0000000000000004 9000000000ef7430 0000000000000000 [ 3.167012] 0000000000000009 000000000000006c 0000000000000000 0000000000000000 [ 3.176641] 9000000000d3de08 9000000001639390 90000000002086d8 00007ffff0080286 [ 3.186260] 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1c [ 3.195868] ... [ 3.199917] Call Trace: [ 3.203941] [<90000000002086d8>] show_stack+0x38/0x14c [ 3.210666] [<9000000000cf846c>] dump_stack_lvl+0x60/0x88 [ 3.217625] [<900000000023d268>] __warn+0xd0/0x100 [ 3.223958] [<9000000000cf3c90>] warn_slowpath_fmt+0x7c/0xcc [ 3.231150] [<9000000000210220>] show_cpuinfo+0x5e8/0x5f0 [ 3.238080] [<90000000004f578c>] seq_read_iter+0x354/0x4b4 [ 3.245098] [<90000000004c2e90>] new_sync_read+0x17c/0x1c4 [ 3.252114] [<90000000004c5174>] vfs_read+0x138/0x1d0 [ 3.258694] [<90000000004c55f8>] ksys_read+0x70/0x100 [ 3.265265] [<9000000000cfde9c>] do_syscall+0x7c/0x94 [ 3.271820] [<9000000000202fe4>] handle_syscall+0xc4/0x160 [ 3.281824] ---[ end trace 8b484262b4b8c24c ]---

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: io_uring/msg_ring: Fix NULL pointer dereference in io_msg_send_fd() Syzkaller produced the below call trace: BUG: KASAN: null-ptr-deref in io_msg_ring+0x3cb/0x9f0 Write of size 8 at addr 0000000000000070 by task repro/16399 CPU: 0 PID: 16399 Comm: repro Not tainted 6.1.0-rc1 #28 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 Call Trace: <TASK> dump_stack_lvl+0xcd/0x134 ? io_msg_ring+0x3cb/0x9f0 kasan_report+0xbc/0xf0 ? io_msg_ring+0x3cb/0x9f0 kasan_check_range+0x140/0x190 io_msg_ring+0x3cb/0x9f0 ? io_msg_ring_prep+0x300/0x300 io_issue_sqe+0x698/0xca0 io_submit_sqes+0x92f/0x1c30 __do_sys_io_uring_enter+0xae4/0x24b0 .... RIP: 0033:0x7f2eaf8f8289 RSP: 002b:00007fff40939718 EFLAGS: 00000246 ORIG_RAX: 00000000000001aa RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f2eaf8f8289 RDX: 0000000000000000 RSI: 0000000000006f71 RDI: 0000000000000004 RBP: 00007fff409397a0 R08: 0000000000000000 R09: 0000000000000039 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000004006d0 R13: 00007fff40939880 R14: 0000000000000000 R15: 0000000000000000 </TASK> Kernel panic - not syncing: panic_on_warn set ... We don't have a NULL check on file_ptr in io_msg_send_fd() function, so when file_ptr is NUL src_file is also NULL and get_file() dereferences a NULL pointer and leads to above crash. Add a NULL check to fix this issue.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: wifi: libertas: fix memory leak in lbs_init_adapter() When kfifo_alloc() failed in lbs_init_adapter(), cmd buffer is not released. Add free memory to processing error path.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: btrfs: do not BUG_ON() on ENOMEM when dropping extent items for a range If we get -ENOMEM while dropping file extent items in a given range, at btrfs_drop_extents(), due to failure to allocate memory when attempting to increment the reference count for an extent or drop the reference count, we handle it with a BUG_ON(). This is excessive, instead we can simply abort the transaction and return the error to the caller. In fact most callers of btrfs_drop_extents(), directly or indirectly, already abort the transaction if btrfs_drop_extents() returns any error. Also, we already have error paths at btrfs_drop_extents() that may return -ENOMEM and in those cases we abort the transaction, like for example anything that changes the b+tree may return -ENOMEM due to a failure to allocate a new extent buffer when COWing an existing extent buffer, such as a call to btrfs_duplicate_item() for example. So replace the BUG_ON() calls with proper logic to abort the transaction and return the error.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drm/msm/dp: fix bridge lifetime Device-managed resources allocated post component bind must be tied to the lifetime of the aggregate DRM device or they will not necessarily be released when binding of the aggregate device is deferred. This can lead resource leaks or failure to bind the aggregate device when binding is later retried and a second attempt to allocate the resources is made. For the DP bridges, previously allocated bridges will leak on probe deferral. Fix this by amending the DP parser interface and tying the lifetime of the bridge device to the DRM device rather than DP platform device. Patchwork: https://patchwork.freedesktop.org/patch/502667/

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: kcm: annotate data-races around kcm->rx_psock kcm->rx_psock can be read locklessly in kcm_rfree(). Annotate the read and writes accordingly. We do the same for kcm->rx_wait in the following patch. syzbot reported: BUG: KCSAN: data-race in kcm_rfree / unreserve_rx_kcm write to 0xffff888123d827b8 of 8 bytes by task 2758 on cpu 1: unreserve_rx_kcm+0x72/0x1f0 net/kcm/kcmsock.c:313 kcm_rcv_strparser+0x2b5/0x3a0 net/kcm/kcmsock.c:373 __strp_recv+0x64c/0xd20 net/strparser/strparser.c:301 strp_recv+0x6d/0x80 net/strparser/strparser.c:335 tcp_read_sock+0x13e/0x5a0 net/ipv4/tcp.c:1703 strp_read_sock net/strparser/strparser.c:358 [inline] do_strp_work net/strparser/strparser.c:406 [inline] strp_work+0xe8/0x180 net/strparser/strparser.c:415 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 read to 0xffff888123d827b8 of 8 bytes by task 5859 on cpu 0: kcm_rfree+0x14c/0x220 net/kcm/kcmsock.c:181 skb_release_head_state+0x8e/0x160 net/core/skbuff.c:841 skb_release_all net/core/skbuff.c:852 [inline] __kfree_skb net/core/skbuff.c:868 [inline] kfree_skb_reason+0x5c/0x260 net/core/skbuff.c:891 kfree_skb include/linux/skbuff.h:1216 [inline] kcm_recvmsg+0x226/0x2b0 net/kcm/kcmsock.c:1161 ____sys_recvmsg+0x16c/0x2e0 ___sys_recvmsg net/socket.c:2743 [inline] do_recvmmsg+0x2f1/0x710 net/socket.c:2837 __sys_recvmmsg net/socket.c:2916 [inline] __do_sys_recvmmsg net/socket.c:2939 [inline] __se_sys_recvmmsg net/socket.c:2932 [inline] __x64_sys_recvmmsg+0xde/0x160 net/socket.c:2932 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0xffff88812971ce00 -> 0x0000000000000000 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 5859 Comm: syz-executor.3 Not tainted 6.0.0-syzkaller-12189-g19d17ab7c68b-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix memory leak in ocfs2_stack_glue_init() ocfs2_table_header should be free in ocfs2_stack_glue_init() if ocfs2_sysfs_init() failed, otherwise kmemleak will report memleak. BUG: memory leak unreferenced object 0xffff88810eeb5800 (size 128): comm "modprobe", pid 4507, jiffies 4296182506 (age 55.888s) hex dump (first 32 bytes): c0 40 14 a0 ff ff ff ff 00 00 00 00 01 00 00 00 .@.............. 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000001e59e1cd>] __register_sysctl_table+0xca/0xef0 [<00000000c04f70f7>] 0xffffffffa0050037 [<000000001bd12912>] do_one_initcall+0xdb/0x480 [<0000000064f766c9>] do_init_module+0x1cf/0x680 [<000000002ba52db0>] load_module+0x6441/0x6f20 [<000000009772580d>] __do_sys_finit_module+0x12f/0x1c0 [<00000000380c1f22>] do_syscall_64+0x3f/0x90 [<000000004cf473bc>] entry_SYSCALL_64_after_hwframe+0x63/0xcd

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: qlcnic: prevent ->dcb use-after-free on qlcnic_dcb_enable() failure adapter->dcb would get silently freed inside qlcnic_dcb_enable() in case qlcnic_dcb_attach() would return an error, which always happens under OOM conditions. This would lead to use-after-free because both of the existing callers invoke qlcnic_dcb_get_info() on the obtained pointer, which is potentially freed at that point. Propagate errors from qlcnic_dcb_enable(), and instead free the dcb pointer at callsite using qlcnic_dcb_free(). This also removes the now unused qlcnic_clear_dcb_ops() helper, which was a simple wrapper around kfree() also causing memory leaks for partially initialized dcb. Found by Linux Verification Center (linuxtesting.org) with the SVACE static analysis tool.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drm/i915/bios: fix a memory leak in generate_lfp_data_ptrs When (size != 0 || ptrs->lvds_ entries != 3), the program tries to free() the ptrs. However, the ptrs is not created by calling kzmalloc(), but is obtained by pointer offset operation. This may lead to memory leaks or undefined behavior. Fix this by replacing the arguments of kfree() with ptrs_block. (cherry picked from commit 7674cd0b7d28b952151c3df26bbfa7e07eb2b4ec)

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ext4: fix delayed allocation bug in ext4_clu_mapped for bigalloc + inline When converting files with inline data to extents, delayed allocations made on a file system created with both the bigalloc and inline options can result in invalid extent status cache content, incorrect reserved cluster counts, kernel memory leaks, and potential kernel panics. With bigalloc, the code that determines whether a block must be delayed allocated searches the extent tree to see if that block maps to a previously allocated cluster. If not, the block is delayed allocated, and otherwise, it isn't. However, if the inline option is also used, and if the file containing the block is marked as able to store data inline, there isn't a valid extent tree associated with the file. The current code in ext4_clu_mapped() calls ext4_find_extent() to search the non-existent tree for a previously allocated cluster anyway, which typically finds nothing, as desired. However, a side effect of the search can be to cache invalid content from the non-existent tree (garbage) in the extent status tree, including bogus entries in the pending reservation tree. To fix this, avoid searching the extent tree when allocating blocks for bigalloc + inline files that are being converted from inline to extent mapped.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: mm,hugetlb: take hugetlb_lock before decrementing h->resv_huge_pages The h->*_huge_pages counters are protected by the hugetlb_lock, but alloc_huge_page has a corner case where it can decrement the counter outside of the lock. This could lead to a corrupted value of h->resv_huge_pages, which we have observed on our systems. Take the hugetlb_lock before decrementing h->resv_huge_pages to avoid a potential race.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ipc: fix memory leak in init_mqueue_fs() When setup_mq_sysctls() failed in init_mqueue_fs(), mqueue_inode_cachep is not released. In order to fix this issue, the release path is reordered.

0.0% 2025-09-15
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: mtd: core: add missing of_node_get() in dynamic partitions code This fixes unbalanced of_node_put(): [ 1.078910] 6 cmdlinepart partitions found on MTD device gpmi-nand [ 1.085116] Creating 6 MTD partitions on "gpmi-nand": [ 1.090181] 0x000000000000-0x000008000000 : "nandboot" [ 1.096952] 0x000008000000-0x000009000000 : "nandfit" [ 1.103547] 0x000009000000-0x00000b000000 : "nandkernel" [ 1.110317] 0x00000b000000-0x00000c000000 : "nanddtb" [ 1.115525] ------------[ cut here ]------------ [ 1.120141] refcount_t: addition on 0; use-after-free. [ 1.125328] WARNING: CPU: 0 PID: 1 at lib/refcount.c:25 refcount_warn_saturate+0xdc/0x148 [ 1.133528] Modules linked in: [ 1.136589] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.0.0-rc7-next-20220930-04543-g8cf3f7 [ 1.146342] Hardware name: Freescale i.MX8DXL DDR3L EVK (DT) [ 1.151999] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 1.158965] pc : refcount_warn_saturate+0xdc/0x148 [ 1.163760] lr : refcount_warn_saturate+0xdc/0x148 [ 1.168556] sp : ffff800009ddb080 [ 1.171866] x29: ffff800009ddb080 x28: ffff800009ddb35a x27: 0000000000000002 [ 1.179015] x26: ffff8000098b06ad x25: ffffffffffffffff x24: ffff0a00ffffff05 [ 1.186165] x23: ffff00001fdf6470 x22: ffff800009ddb367 x21: 0000000000000000 [ 1.193314] x20: ffff00001fdfebe8 x19: ffff00001fdfec50 x18: ffffffffffffffff [ 1.200464] x17: 0000000000000000 x16: 0000000000000118 x15: 0000000000000004 [ 1.207614] x14: 0000000000000fff x13: ffff800009bca248 x12: 0000000000000003 [ 1.214764] x11: 00000000ffffefff x10: c0000000ffffefff x9 : 4762cb2ccb52de00 [ 1.221914] x8 : 4762cb2ccb52de00 x7 : 205d313431303231 x6 : 312e31202020205b [ 1.229063] x5 : ffff800009d55c1f x4 : 0000000000000001 x3 : 0000000000000000 [ 1.236213] x2 : 0000000000000000 x1 : ffff800009954be6 x0 : 000000000000002a [ 1.243365] Call trace: [ 1.245806] refcount_warn_saturate+0xdc/0x148 [ 1.250253] kobject_get+0x98/0x9c [ 1.253658] of_node_get+0x20/0x34 [ 1.257072] of_fwnode_get+0x3c/0x54 [ 1.260652] fwnode_get_nth_parent+0xd8/0xf4 [ 1.264926] fwnode_full_name_string+0x3c/0xb4 [ 1.269373] device_node_string+0x498/0x5b4 [ 1.273561] pointer+0x41c/0x5d0 [ 1.276793] vsnprintf+0x4d8/0x694 [ 1.280198] vprintk_store+0x164/0x528 [ 1.283951] vprintk_emit+0x98/0x164 [ 1.287530] vprintk_default+0x44/0x6c [ 1.291284] vprintk+0xf0/0x134 [ 1.294428] _printk+0x54/0x7c [ 1.297486] of_node_release+0xe8/0x128 [ 1.301326] kobject_put+0x98/0xfc [ 1.304732] of_node_put+0x1c/0x28 [ 1.308137] add_mtd_device+0x484/0x6d4 [ 1.311977] add_mtd_partitions+0xf0/0x1d0 [ 1.316078] parse_mtd_partitions+0x45c/0x518 [ 1.320439] mtd_device_parse_register+0xb0/0x274 [ 1.325147] gpmi_nand_probe+0x51c/0x650 [ 1.329074] platform_probe+0xa8/0xd0 [ 1.332740] really_probe+0x130/0x334 [ 1.336406] __driver_probe_device+0xb4/0xe0 [ 1.340681] driver_probe_device+0x3c/0x1f8 [ 1.344869] __driver_attach+0xdc/0x1a4 [ 1.348708] bus_for_each_dev+0x80/0xcc [ 1.352548] driver_attach+0x24/0x30 [ 1.356127] bus_add_driver+0x108/0x1f4 [ 1.359967] driver_register+0x78/0x114 [ 1.363807] __platform_driver_register+0x24/0x30 [ 1.368515] gpmi_nand_driver_init+0x1c/0x28 [ 1.372798] do_one_initcall+0xbc/0x238 [ 1.376638] do_initcall_level+0x94/0xb4 [ 1.380565] do_initcalls+0x54/0x94 [ 1.384058] do_basic_setup+0x1c/0x28 [ 1.387724] kernel_init_freeable+0x110/0x188 [ 1.392084] kernel_init+0x20/0x1a0 [ 1.395578] ret_from_fork+0x10/0x20 [ 1.399157] ---[ end trace 0000000000000000 ]--- [ 1.403782] ------------[ cut here ]------------

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: chardev: fix error handling in cdev_device_add() While doing fault injection test, I got the following report: ------------[ cut here ]------------ kobject: '(null)' (0000000039956980): is not initialized, yet kobject_put() is being called. WARNING: CPU: 3 PID: 6306 at kobject_put+0x23d/0x4e0 CPU: 3 PID: 6306 Comm: 283 Tainted: G W 6.1.0-rc2-00005-g307c1086d7c9 #1253 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:kobject_put+0x23d/0x4e0 Call Trace: <TASK> cdev_device_add+0x15e/0x1b0 __iio_device_register+0x13b4/0x1af0 [industrialio] __devm_iio_device_register+0x22/0x90 [industrialio] max517_probe+0x3d8/0x6b4 [max517] i2c_device_probe+0xa81/0xc00 When device_add() is injected fault and returns error, if dev->devt is not set, cdev_add() is not called, cdev_del() is not needed. Fix this by checking dev->devt in error path.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: MIPS: SGI-IP27: Fix platform-device leak in bridge_platform_create() In error case in bridge_platform_create after calling platform_device_add()/platform_device_add_data()/ platform_device_add_resources(), release the failed 'pdev' or it will be leak, call platform_device_put() to fix this problem. Besides, 'pdev' is divided into 'pdev_wd' and 'pdev_bd', use platform_device_unregister() to release sgi_w1 resources when xtalk-bridge registration fails.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: pnode: terminate at peers of source The propagate_mnt() function handles mount propagation when creating mounts and propagates the source mount tree @source_mnt to all applicable nodes of the destination propagation mount tree headed by @dest_mnt. Unfortunately it contains a bug where it fails to terminate at peers of @source_mnt when looking up copies of the source mount that become masters for copies of the source mount tree mounted on top of slaves in the destination propagation tree causing a NULL dereference. Once the mechanics of the bug are understood it's easy to trigger. Because of unprivileged user namespaces it is available to unprivileged users. While fixing this bug we've gotten confused multiple times due to unclear terminology or missing concepts. So let's start this with some clarifications: * The terms "master" or "peer" denote a shared mount. A shared mount belongs to a peer group. * A peer group is a set of shared mounts that propagate to each other. They are identified by a peer group id. The peer group id is available in @shared_mnt->mnt_group_id. Shared mounts within the same peer group have the same peer group id. The peers in a peer group can be reached via @shared_mnt->mnt_share. * The terms "slave mount" or "dependent mount" denote a mount that receives propagation from a peer in a peer group. IOW, shared mounts may have slave mounts and slave mounts have shared mounts as their master. Slave mounts of a given peer in a peer group are listed on that peers slave list available at @shared_mnt->mnt_slave_list. * The term "master mount" denotes a mount in a peer group. IOW, it denotes a shared mount or a peer mount in a peer group. The term "master mount" - or "master" for short - is mostly used when talking in the context of slave mounts that receive propagation from a master mount. A master mount of a slave identifies the closest peer group a slave mount receives propagation from. The master mount of a slave can be identified via @slave_mount->mnt_master. Different slaves may point to different masters in the same peer group. * Multiple peers in a peer group can have non-empty ->mnt_slave_lists. Non-empty ->mnt_slave_lists of peers don't intersect. Consequently, to ensure all slave mounts of a peer group are visited the ->mnt_slave_lists of all peers in a peer group have to be walked. * Slave mounts point to a peer in the closest peer group they receive propagation from via @slave_mnt->mnt_master (see above). Together with these peers they form a propagation group (see below). The closest peer group can thus be identified through the peer group id @slave_mnt->mnt_master->mnt_group_id of the peer/master that a slave mount receives propagation from. * A shared-slave mount is a slave mount to a peer group pg1 while also a peer in another peer group pg2. IOW, a peer group may receive propagation from another peer group. If a peer group pg1 is a slave to another peer group pg2 then all peers in peer group pg1 point to the same peer in peer group pg2 via ->mnt_master. IOW, all peers in peer group pg1 appear on the same ->mnt_slave_list. IOW, they cannot be slaves to different peer groups. * A pure slave mount is a slave mount that is a slave to a peer group but is not a peer in another peer group. * A propagation group denotes the set of mounts consisting of a single peer group pg1 and all slave mounts and shared-slave mounts that point to a peer in that peer group via ->mnt_master. IOW, all slave mounts such that @slave_mnt->mnt_master->mnt_group_id is equal to @shared_mnt->mnt_group_id. The concept of a propagation group makes it easier to talk about a single propagation level in a propagation tree. For example, in propagate_mnt() the immediate peers of @dest_mnt and all slaves of @dest_mnt's peer group form a propagation group pr ---truncated---

0.0% 2025-09-15
7.1 HIGH

In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: Fix global-out-of-bounds bug in _rtl8812ae_phy_set_txpower_limit() There is a global-out-of-bounds reported by KASAN: BUG: KASAN: global-out-of-bounds in _rtl8812ae_eq_n_byte.part.0+0x3d/0x84 [rtl8821ae] Read of size 1 at addr ffffffffa0773c43 by task NetworkManager/411 CPU: 6 PID: 411 Comm: NetworkManager Tainted: G D 6.1.0-rc8+ #144 e15588508517267d37 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), Call Trace: <TASK> ... kasan_report+0xbb/0x1c0 _rtl8812ae_eq_n_byte.part.0+0x3d/0x84 [rtl8821ae] rtl8821ae_phy_bb_config.cold+0x346/0x641 [rtl8821ae] rtl8821ae_hw_init+0x1f5e/0x79b0 [rtl8821ae] ... </TASK> The root cause of the problem is that the comparison order of "prate_section" in _rtl8812ae_phy_set_txpower_limit() is wrong. The _rtl8812ae_eq_n_byte() is used to compare the first n bytes of the two strings from tail to head, which causes the problem. In the _rtl8812ae_phy_set_txpower_limit(), it was originally intended to meet this requirement by carefully designing the comparison order. For example, "pregulation" and "pbandwidth" are compared in order of length from small to large, first is 3 and last is 4. However, the comparison order of "prate_section" dose not obey such order requirement, therefore when "prate_section" is "HT", when comparing from tail to head, it will lead to access out of bounds in _rtl8812ae_eq_n_byte(). As mentioned above, the _rtl8812ae_eq_n_byte() has the same function as strcmp(), so just strcmp() is enough. Fix it by removing _rtl8812ae_eq_n_byte() and use strcmp() barely. Although it can be fixed by adjusting the comparison order of "prate_section", this may cause the value of "rate_section" to not be from 0 to 5. In addition, commit "21e4b0726dc6" not only moved driver from staging to regular tree, but also added setting txpower limit function during the driver config phase, so the problem was introduced by this commit.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: PNP: fix name memory leak in pnp_alloc_dev() After commit 1fa5ae857bb1 ("driver core: get rid of struct device's bus_id string array"), the name of device is allocated dynamically, move dev_set_name() after pnp_add_id() to avoid memory leak.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ext4: don't allow journal inode to have encrypt flag Mounting a filesystem whose journal inode has the encrypt flag causes a NULL dereference in fscrypt_limit_io_blocks() when the 'inlinecrypt' mount option is used. The problem is that when jbd2_journal_init_inode() calls bmap(), it eventually finds its way into ext4_iomap_begin(), which calls fscrypt_limit_io_blocks(). fscrypt_limit_io_blocks() requires that if the inode is encrypted, then its encryption key must already be set up. That's not the case here, since the journal inode is never "opened" like a normal file would be. Hence the crash. A reproducer is: mkfs.ext4 -F /dev/vdb debugfs -w /dev/vdb -R "set_inode_field <8> flags 0x80808" mount /dev/vdb /mnt -o inlinecrypt To fix this, make ext4 consider journal inodes with the encrypt flag to be invalid. (Note, maybe other flags should be rejected on the journal inode too. For now, this is just the minimal fix for the above issue.) I've marked this as fixing the commit that introduced the call to fscrypt_limit_io_blocks(), since that's what made an actual crash start being possible. But this fix could be applied to any version of ext4 that supports the encrypt feature.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: power: supply: fix null pointer dereferencing in power_supply_get_battery_info when kmalloc() fail to allocate memory in kasprintf(), propname will be NULL, strcmp() called by of_get_property() will cause null pointer dereference. So return ENOMEM if kasprintf() return NULL pointer.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Add the missed acpi_put_table() to fix memory leak When the radeon driver reads the bios information from ACPI table in radeon_acpi_vfct_bios(), it misses to call acpi_put_table() to release the ACPI memory after the init, so add acpi_put_table() properly to fix the memory leak. v2: fix text formatting (Alex)

0.0% 2025-09-15
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: media: dvbdev: adopts refcnt to avoid UAF dvb_unregister_device() is known that prone to use-after-free. That is, the cleanup from dvb_unregister_device() releases the dvb_device even if there are pointers stored in file->private_data still refer to it. This patch adds a reference counter into struct dvb_device and delays its deallocation until no pointer refers to the object.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on destination blkaddr during recovery As Wenqing Liu reported in bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216456 loop5: detected capacity change from 0 to 131072 F2FS-fs (loop5): recover_inode: ino = 6, name = hln, inline = 1 F2FS-fs (loop5): recover_data: ino = 6 (i_size: recover) err = 0 F2FS-fs (loop5): recover_inode: ino = 6, name = hln, inline = 1 F2FS-fs (loop5): recover_data: ino = 6 (i_size: recover) err = 0 F2FS-fs (loop5): recover_inode: ino = 6, name = hln, inline = 1 F2FS-fs (loop5): recover_data: ino = 6 (i_size: recover) err = 0 F2FS-fs (loop5): Bitmap was wrongly set, blk:5634 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 1013 at fs/f2fs/segment.c:2198 RIP: 0010:update_sit_entry+0xa55/0x10b0 [f2fs] Call Trace: <TASK> f2fs_do_replace_block+0xa98/0x1890 [f2fs] f2fs_replace_block+0xeb/0x180 [f2fs] recover_data+0x1a69/0x6ae0 [f2fs] f2fs_recover_fsync_data+0x120d/0x1fc0 [f2fs] f2fs_fill_super+0x4665/0x61e0 [f2fs] mount_bdev+0x2cf/0x3b0 legacy_get_tree+0xed/0x1d0 vfs_get_tree+0x81/0x2b0 path_mount+0x47e/0x19d0 do_mount+0xce/0xf0 __x64_sys_mount+0x12c/0x1a0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd If we enable CONFIG_F2FS_CHECK_FS config, it will trigger a kernel panic instead of warning. The root cause is: in fuzzed image, SIT table is inconsistent with inode mapping table, result in triggering such warning during SIT table update. This patch introduces a new flag DATA_GENERIC_ENHANCE_UPDATE, w/ this flag, data block recovery flow can check destination blkaddr's validation in SIT table, and skip f2fs_replace_block() to avoid inconsistent status.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer() Wei Chen reports a kernel bug as blew: general protection fault, probably for non-canonical address KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017] ... Call Trace: <TASK> __i2c_transfer+0x77e/0x1930 drivers/i2c/i2c-core-base.c:2109 i2c_transfer+0x1d5/0x3d0 drivers/i2c/i2c-core-base.c:2170 i2cdev_ioctl_rdwr+0x393/0x660 drivers/i2c/i2c-dev.c:297 i2cdev_ioctl+0x75d/0x9f0 drivers/i2c/i2c-dev.c:458 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl+0xfb/0x170 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fd834a8bded In az6027_i2c_xfer(), if msg[i].addr is 0x99, a null-ptr-deref will caused when accessing msg[i].buf. For msg[i].len is 0 and msg[i].buf is null. Fix this by checking msg[i].len in az6027_i2c_xfer().

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: vhost/vsock: Use kvmalloc/kvfree for larger packets. When copying a large file over sftp over vsock, data size is usually 32kB, and kmalloc seems to fail to try to allocate 32 32kB regions. vhost-5837: page allocation failure: order:4, mode:0x24040c0 Call Trace: [<ffffffffb6a0df64>] dump_stack+0x97/0xdb [<ffffffffb68d6aed>] warn_alloc_failed+0x10f/0x138 [<ffffffffb68d868a>] ? __alloc_pages_direct_compact+0x38/0xc8 [<ffffffffb664619f>] __alloc_pages_nodemask+0x84c/0x90d [<ffffffffb6646e56>] alloc_kmem_pages+0x17/0x19 [<ffffffffb6653a26>] kmalloc_order_trace+0x2b/0xdb [<ffffffffb66682f3>] __kmalloc+0x177/0x1f7 [<ffffffffb66e0d94>] ? copy_from_iter+0x8d/0x31d [<ffffffffc0689ab7>] vhost_vsock_handle_tx_kick+0x1fa/0x301 [vhost_vsock] [<ffffffffc06828d9>] vhost_worker+0xf7/0x157 [vhost] [<ffffffffb683ddce>] kthread+0xfd/0x105 [<ffffffffc06827e2>] ? vhost_dev_set_owner+0x22e/0x22e [vhost] [<ffffffffb683dcd1>] ? flush_kthread_worker+0xf3/0xf3 [<ffffffffb6eb332e>] ret_from_fork+0x4e/0x80 [<ffffffffb683dcd1>] ? flush_kthread_worker+0xf3/0xf3 Work around by doing kvmalloc instead.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drm/vkms: Fix memory leak in vkms_init() A memory leak was reported after the vkms module install failed. unreferenced object 0xffff88810bc28520 (size 16): comm "modprobe", pid 9662, jiffies 4298009455 (age 42.590s) hex dump (first 16 bytes): 01 01 00 64 81 88 ff ff 00 00 dc 0a 81 88 ff ff ...d............ backtrace: [<00000000e7561ff8>] kmalloc_trace+0x27/0x60 [<000000000b1954a0>] 0xffffffffc45200a9 [<00000000abbf1da0>] do_one_initcall+0xd0/0x4f0 [<000000001505ee87>] do_init_module+0x1a4/0x680 [<00000000958079ad>] load_module+0x6249/0x7110 [<00000000117e4696>] __do_sys_finit_module+0x140/0x200 [<00000000f74b12d2>] do_syscall_64+0x35/0x80 [<000000008fc6fcde>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 The reason is that the vkms_init() returns without checking the return value of vkms_create(), and if the vkms_create() failed, the config allocated at the beginning of vkms_init() is leaked. vkms_init() config = kmalloc(...) # config allocated ... return vkms_create() # vkms_create failed and config is leaked Fix this problem by checking return value of vkms_create() and free the config if error happened.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: mmc: moxart: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, the memory that allocated in mmc_alloc_host() will be leaked and it will lead a kernel crash because of deleting not added device in the remove path. So fix this by checking the return value and goto error path which will call mmc_free_host().

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: mmc: rtsx_pci: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, the memory that allocated in mmc_alloc_host() will be leaked and it will lead a kernel crash because of deleting not added device in the remove path. So fix this by checking the return value and calling mmc_free_host() in the error path, beside, runtime PM also needs be disabled.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: kprobes: Fix check for probe enabled in kill_kprobe() In kill_kprobe(), the check whether disarm_kprobe_ftrace() needs to be called always fails. This is because before that we set the KPROBE_FLAG_GONE flag for kprobe so that "!kprobe_disabled(p)" is always false. The disarm_kprobe_ftrace() call introduced by commit: 0cb2f1372baa ("kprobes: Fix NULL pointer dereference at kprobe_ftrace_handler") to fix the NULL pointer reference problem. When the probe is enabled, if we do not disarm it, this problem still exists. Fix it by putting the probe enabled check before setting the KPROBE_FLAG_GONE flag.

0.0% 2025-09-15
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: kcm: annotate data-races around kcm->rx_wait kcm->rx_psock can be read locklessly in kcm_rfree(). Annotate the read and writes accordingly. syzbot reported: BUG: KCSAN: data-race in kcm_rcv_strparser / kcm_rfree write to 0xffff88810784e3d0 of 1 bytes by task 1823 on cpu 1: reserve_rx_kcm net/kcm/kcmsock.c:283 [inline] kcm_rcv_strparser+0x250/0x3a0 net/kcm/kcmsock.c:363 __strp_recv+0x64c/0xd20 net/strparser/strparser.c:301 strp_recv+0x6d/0x80 net/strparser/strparser.c:335 tcp_read_sock+0x13e/0x5a0 net/ipv4/tcp.c:1703 strp_read_sock net/strparser/strparser.c:358 [inline] do_strp_work net/strparser/strparser.c:406 [inline] strp_work+0xe8/0x180 net/strparser/strparser.c:415 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 read to 0xffff88810784e3d0 of 1 bytes by task 17869 on cpu 0: kcm_rfree+0x121/0x220 net/kcm/kcmsock.c:181 skb_release_head_state+0x8e/0x160 net/core/skbuff.c:841 skb_release_all net/core/skbuff.c:852 [inline] __kfree_skb net/core/skbuff.c:868 [inline] kfree_skb_reason+0x5c/0x260 net/core/skbuff.c:891 kfree_skb include/linux/skbuff.h:1216 [inline] kcm_recvmsg+0x226/0x2b0 net/kcm/kcmsock.c:1161 ____sys_recvmsg+0x16c/0x2e0 ___sys_recvmsg net/socket.c:2743 [inline] do_recvmmsg+0x2f1/0x710 net/socket.c:2837 __sys_recvmmsg net/socket.c:2916 [inline] __do_sys_recvmmsg net/socket.c:2939 [inline] __se_sys_recvmmsg net/socket.c:2932 [inline] __x64_sys_recvmmsg+0xde/0x160 net/socket.c:2932 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x01 -> 0x00 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 17869 Comm: syz-executor.2 Not tainted 6.1.0-rc1-syzkaller-00010-gbb1a1146467a-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022

0.0% 2025-09-15