Unitree Go1 <= Go1_2022_05_11 is vulnerable to Insecure Permissions as the firmware update functionality (via Wi-Fi/Ethernet) implements an insecure verification mechanism that solely relies on MD5 checksums for firmware integrity validation.
In the Linux kernel, the following vulnerability has been resolved:
drm/scheduler: signal scheduled fence when kill job
When an entity from application B is killed, drm_sched_entity_kill()
removes all jobs belonging to that entity through
drm_sched_entity_kill_jobs_work(). If application A's job depends on a
scheduled fence from application B's job, and that fence is not properly
signaled during the killing process, application A's dependency cannot be
cleared.
This leads to application A hanging indefinitely while waiting for a
dependency that will never be resolved. Fix this issue by ensuring that
scheduled fences are properly signaled when an entity is killed, allowing
dependent applications to continue execution.
In the Linux kernel, the following vulnerability has been resolved:
riscv: vector: Fix context save/restore with xtheadvector
Previously only v0-v7 were correctly saved/restored,
and the context of v8-v31 are damanged.
Correctly save/restore v8-v31 to avoid breaking userspace.
In the Linux kernel, the following vulnerability has been resolved:
Revert "riscv: Define TASK_SIZE_MAX for __access_ok()"
This reverts commit ad5643cf2f69 ("riscv: Define TASK_SIZE_MAX for
__access_ok()").
This commit changes TASK_SIZE_MAX to be LONG_MAX to optimize access_ok(),
because the previous TASK_SIZE_MAX (default to TASK_SIZE) requires some
computation.
The reasoning was that all user addresses are less than LONG_MAX, and all
kernel addresses are greater than LONG_MAX. Therefore access_ok() can
filter kernel addresses.
Addresses between TASK_SIZE and LONG_MAX are not valid user addresses, but
access_ok() let them pass. That was thought to be okay, because they are
not valid addresses at hardware level.
Unfortunately, one case is missed: get_user_pages_fast() happily accepts
addresses between TASK_SIZE and LONG_MAX. futex(), for instance, uses
get_user_pages_fast(). This causes the problem reported by Robert [1].
Therefore, revert this commit. TASK_SIZE_MAX is changed to the default:
TASK_SIZE.
This unfortunately reduces performance, because TASK_SIZE is more expensive
to compute compared to LONG_MAX. But correctness first, we can think about
optimization later, if required.
In the Linux kernel, the following vulnerability has been resolved:
riscv: fix runtime constant support for nommu kernels
the `__runtime_fixup_32` function does not handle the case where `val` is
zero correctly (as might occur when patching a nommu kernel and referring
to a physical address below the 4GiB boundary whose upper 32 bits are all
zero) because nothing in the existing logic prevents the code from taking
the `else` branch of both nop-checks and emitting two `nop` instructions.
This leaves random garbage in the register that is supposed to receive the
upper 32 bits of the pointer instead of zero that when combined with the
value for the lower 32 bits yields an invalid pointer and causes a kernel
panic when that pointer is eventually accessed.
The author clearly considered the fact that if the `lui` is converted into
a `nop` that the second instruction needs to be adjusted to become an `li`
instead of an `addi`, hence introducing the `addi_insn_mask` variable, but
didn't follow that logic through fully to the case where the `else` branch
executes. To fix it just adjust the logic to ensure that the second `else`
branch is not taken if the first instruction will be patched to a `nop`.
In the Linux kernel, the following vulnerability has been resolved:
net: netpoll: Initialize UDP checksum field before checksumming
commit f1fce08e63fe ("netpoll: Eliminate redundant assignment") removed
the initialization of the UDP checksum, which was wrong and broke
netpoll IPv6 transmission due to bad checksumming.
udph->check needs to be set before calling csum_ipv6_magic().
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix regression with native SMB symlinks
Some users and customers reported that their backup/copy tools started
to fail when the directory being copied contained symlink targets that
the client couldn't parse - even when those symlinks weren't followed.
Fix this by allowing lstat(2) and readlink(2) to succeed even when the
client can't resolve the symlink target, restoring old behavior.
In the Linux kernel, the following vulnerability has been resolved:
nfsd: nfsd4_spo_must_allow() must check this is a v4 compound request
If the request being processed is not a v4 compound request, then
examining the cstate can have undefined results.
This patch adds a check that the rpc procedure being executed
(rq_procinfo) is the NFSPROC4_COMPOUND procedure.
In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: ep: Update read pointer only after buffer is written
Inside mhi_ep_ring_add_element, the read pointer (rd_offset) is updated
before the buffer is written, potentially causing race conditions where
the host sees an updated read pointer before the buffer is actually
written. Updating rd_offset prematurely can lead to the host accessing
an uninitialized or incomplete element, resulting in data corruption.
Invoke the buffer write before updating rd_offset to ensure the element
is fully written before signaling its availability.
In the Linux kernel, the following vulnerability has been resolved:
Input: ims-pcu - check record size in ims_pcu_flash_firmware()
The "len" variable comes from the firmware and we generally do
trust firmware, but it's always better to double check. If the "len"
is too large it could result in memory corruption when we do
"memcpy(fragment->data, rec->data, len);"
In the Linux kernel, the following vulnerability has been resolved:
video: screen_info: Relocate framebuffers behind PCI bridges
Apply PCI host-bridge window offsets to screen_info framebuffers. Fixes
invalid access to I/O memory.
Resources behind a PCI host bridge can be relocated by a certain offset
in the kernel's CPU address range used for I/O. The framebuffer memory
range stored in screen_info refers to the CPU addresses as seen during
boot (where the offset is 0). During boot up, firmware may assign a
different memory offset to the PCI host bridge and thereby relocating
the framebuffer address of the PCI graphics device as seen by the kernel.
The information in screen_info must be updated as well.
The helper pcibios_bus_to_resource() performs the relocation of the
screen_info's framebuffer resource (given in PCI bus addresses). The
result matches the I/O-memory resource of the PCI graphics device (given
in CPU addresses). As before, we store away the information necessary to
later update the information in screen_info itself.
Commit 78aa89d1dfba ("firmware/sysfb: Update screen_info for relocated
EFI framebuffers") added the code for updating screen_info. It is based
on similar functionality that pre-existed in efifb. Efifb uses a pointer
to the PCI resource, while the newer code does a memcpy of the region.
Hence efifb sees any updates to the PCI resource and avoids the issue.
v3:
- Only use struct pci_bus_region for PCI bus addresses (Bjorn)
- Clarify address semantics in commit messages and comments (Bjorn)
v2:
- Fixed tags (Takashi, Ivan)
- Updated information on efifb
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Add basic validation for RAS header
If RAS header read from EEPROM is corrupted, it could result in trying
to allocate huge memory for reading the records. Add some validation to
header fields.
In the Linux kernel, the following vulnerability has been resolved:
i2c: tegra: check msg length in SMBUS block read
For SMBUS block read, do not continue to read if the message length
passed from the device is '0' or greater than the maximum allowed bytes.
In the Linux kernel, the following vulnerability has been resolved:
perf: Fix sample vs do_exit()
Baisheng Gao reported an ARM64 crash, which Mark decoded as being a
synchronous external abort -- most likely due to trying to access
MMIO in bad ways.
The crash further shows perf trying to do a user stack sample while in
exit_mmap()'s tlb_finish_mmu() -- i.e. while tearing down the address
space it is trying to access.
It turns out that we stop perf after we tear down the userspace mm; a
receipie for disaster, since perf likes to access userspace for
various reasons.
Flip this order by moving up where we stop perf in do_exit().
Additionally, harden PERF_SAMPLE_CALLCHAIN and PERF_SAMPLE_STACK_USER
to abort when the current task does not have an mm (exit_mm() makes
sure to set current->mm = NULL; before commencing with the actual
teardown). Such that CPU wide events don't trip on this same problem.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd9375: Fix double free of regulator supplies
Driver gets regulator supplies in probe path with
devm_regulator_bulk_get(), so should not call regulator_bulk_free() in
error and remove paths to avoid double free.
In the Linux kernel, the following vulnerability has been resolved:
net: lan743x: Modify the EEPROM and OTP size for PCI1xxxx devices
Maximum OTP and EEPROM size for hearthstone PCI1xxxx devices are 8 Kb
and 64 Kb respectively. Adjust max size definitions and return correct
EEPROM length based on device. Also prevent out-of-bound read/write.
In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: pmf: Use device managed allocations
If setting up smart PC fails for any reason then this can lead to
a double free when unloading amd-pmf. This is because dev->buf was
freed but never set to NULL and is again freed in amd_pmf_remove().
To avoid subtle allocation bugs in failures leading to a double free
change all allocations into device managed allocations.
In the Linux kernel, the following vulnerability has been resolved:
wifi: carl9170: do not ping device which has failed to load firmware
Syzkaller reports [1, 2] crashes caused by an attempts to ping
the device which has failed to load firmware. Since such a device
doesn't pass 'ieee80211_register_hw()', an internal workqueue
managed by 'ieee80211_queue_work()' is not yet created and an
attempt to queue work on it causes null-ptr-deref.
[1] https://syzkaller.appspot.com/bug?extid=9a4aec827829942045ff
[2] https://syzkaller.appspot.com/bug?extid=0d8afba53e8fb2633217
An issue in the OTP mechanism of Chavara Family Welfare Centre Chavara Matrimony Site v2.0 allows attackers to bypass authentication via supplying a crafted request.
In the Linux kernel, the following vulnerability has been resolved:
remoteproc: core: Cleanup acquired resources when rproc_handle_resources() fails in rproc_attach()
When rproc->state = RPROC_DETACHED and rproc_attach() is used
to attach to the remote processor, if rproc_handle_resources()
returns a failure, the resources allocated by imx_rproc_prepare()
should be released, otherwise the following memory leak will occur.
Since almost the same thing is done in imx_rproc_prepare() and
rproc_resource_cleanup(), Function rproc_resource_cleanup() is able
to deal with empty lists so it is better to fix the "goto" statements
in rproc_attach(). replace the "unprepare_device" goto statement with
"clean_up_resources" and get rid of the "unprepare_device" label.
unreferenced object 0xffff0000861c5d00 (size 128):
comm "kworker/u12:3", pid 59, jiffies 4294893509 (age 149.220s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 02 88 00 00 00 00 00 00 10 00 00 00 00 00 ............
backtrace:
[<00000000f949fe18>] slab_post_alloc_hook+0x98/0x37c
[<00000000adbfb3e7>] __kmem_cache_alloc_node+0x138/0x2e0
[<00000000521c0345>] kmalloc_trace+0x40/0x158
[<000000004e330a49>] rproc_mem_entry_init+0x60/0xf8
[<000000002815755e>] imx_rproc_prepare+0xe0/0x180
[<0000000003f61b4e>] rproc_boot+0x2ec/0x528
[<00000000e7e994ac>] rproc_add+0x124/0x17c
[<0000000048594076>] imx_rproc_probe+0x4ec/0x5d4
[<00000000efc298a1>] platform_probe+0x68/0xd8
[<00000000110be6fe>] really_probe+0x110/0x27c
[<00000000e245c0ae>] __driver_probe_device+0x78/0x12c
[<00000000f61f6f5e>] driver_probe_device+0x3c/0x118
[<00000000a7874938>] __device_attach_driver+0xb8/0xf8
[<0000000065319e69>] bus_for_each_drv+0x84/0xe4
[<00000000db3eb243>] __device_attach+0xfc/0x18c
[<0000000072e4e1a4>] device_initial_probe+0x14/0x20
In the Linux kernel, the following vulnerability has been resolved:
ice: fix eswitch code memory leak in reset scenario
Add simple eswitch mode checker in attaching VF procedure and allocate
required port representor memory structures only in switchdev mode.
The reset flows triggers VF (if present) detach/attach procedure.
It might involve VF port representor(s) re-creation if the device is
configured is switchdev mode (not legacy one).
The memory was blindly allocated in current implementation,
regardless of the mode and not freed if in legacy mode.
Kmemeleak trace:
unreferenced object (percpu) 0x7e3bce5b888458 (size 40):
comm "bash", pid 1784, jiffies 4295743894
hex dump (first 32 bytes on cpu 45):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 0):
pcpu_alloc_noprof+0x4c4/0x7c0
ice_repr_create+0x66/0x130 [ice]
ice_repr_create_vf+0x22/0x70 [ice]
ice_eswitch_attach_vf+0x1b/0xa0 [ice]
ice_reset_all_vfs+0x1dd/0x2f0 [ice]
ice_pci_err_resume+0x3b/0xb0 [ice]
pci_reset_function+0x8f/0x120
reset_store+0x56/0xa0
kernfs_fop_write_iter+0x120/0x1b0
vfs_write+0x31c/0x430
ksys_write+0x61/0xd0
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Testing hints (ethX is PF netdev):
- create at least one VF
echo 1 > /sys/class/net/ethX/device/sriov_numvfs
- trigger the reset
echo 1 > /sys/class/net/ethX/device/reset
In the Linux kernel, the following vulnerability has been resolved:
NFC: nci: uart: Set tty->disc_data only in success path
Setting tty->disc_data before opening the NCI device means we need to
clean it up on error paths. This also opens some short window if device
starts sending data, even before NCIUARTSETDRIVER IOCTL succeeded
(broken hardware?). Close the window by exposing tty->disc_data only on
the success path, when opening of the NCI device and try_module_get()
succeeds.
The code differs in error path in one aspect: tty->disc_data won't be
ever assigned thus NULL-ified. This however should not be relevant
difference, because of "tty->disc_data=NULL" in nci_uart_tty_open().
In the Linux kernel, the following vulnerability has been resolved:
Squashfs: check return result of sb_min_blocksize
Syzkaller reports an "UBSAN: shift-out-of-bounds in squashfs_bio_read" bug.
Syzkaller forks multiple processes which after mounting the Squashfs
filesystem, issues an ioctl("/dev/loop0", LOOP_SET_BLOCK_SIZE, 0x8000).
Now if this ioctl occurs at the same time another process is in the
process of mounting a Squashfs filesystem on /dev/loop0, the failure
occurs. When this happens the following code in squashfs_fill_super()
fails.
----
msblk->devblksize = sb_min_blocksize(sb, SQUASHFS_DEVBLK_SIZE);
msblk->devblksize_log2 = ffz(~msblk->devblksize);
----
sb_min_blocksize() returns 0, which means msblk->devblksize is set to 0.
As a result, ffz(~msblk->devblksize) returns 64, and msblk->devblksize_log2
is set to 64.
This subsequently causes the
UBSAN: shift-out-of-bounds in fs/squashfs/block.c:195:36
shift exponent 64 is too large for 64-bit type 'u64' (aka
'unsigned long long')
This commit adds a check for a 0 return by sb_min_blocksize().
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix GCC_GCC_PCIE_HOT_RST definition for WCN7850
GCC_GCC_PCIE_HOT_RST is wrongly defined for WCN7850, causing kernel crash
on some specific platforms.
Since this register is divergent for WCN7850 and QCN9274, move it to
register table to allow different definitions. Then correct the register
address for WCN7850 to fix this issue.
Note IPQ5332 is not affected as it is not PCIe based device.
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3
In the Linux kernel, the following vulnerability has been resolved:
virtio-net: xsk: rx: fix the frame's length check
When calling buf_to_xdp, the len argument is the frame data's length
without virtio header's length (vi->hdr_len). We check that len with
xsk_pool_get_rx_frame_size() + vi->hdr_len
to ensure the provided len does not larger than the allocated chunk
size. The additional vi->hdr_len is because in virtnet_add_recvbuf_xsk,
we use part of XDP_PACKET_HEADROOM for virtio header and ask the vhost
to start placing data from
hard_start + XDP_PACKET_HEADROOM - vi->hdr_len
not
hard_start + XDP_PACKET_HEADROOM
But the first buffer has virtio_header, so the maximum frame's length in
the first buffer can only be
xsk_pool_get_rx_frame_size()
not
xsk_pool_get_rx_frame_size() + vi->hdr_len
like in the current check.
This commit adds an additional argument to buf_to_xdp differentiate
between the first buffer and other ones to correctly calculate the maximum
frame's length.
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: dell-wmi-sysman: Fix WMI data block retrieval in sysfs callbacks
After retrieving WMI data blocks in sysfs callbacks, check for the
validity of them before dereferencing their content.
In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix double put of request
If a netfs request finishes during the pause loop, it will have the ref
that belongs to the IN_PROGRESS flag removed at that point - however, if it
then goes to the final wait loop, that will *also* put the ref because it
sees that the IN_PROGRESS flag is clear and incorrectly assumes that this
happened when it called the collector.
In fact, since IN_PROGRESS is clear, we shouldn't call the collector again
since it's done all the cleanup, such as calling ->ki_complete().
Fix this by making netfs_collect_in_app() just return, indicating that
we're done if IN_PROGRESS is removed.
In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Fix a fence leak in submit error path
In error paths, we could unref the submit without calling
drm_sched_entity_push_job(), so msm_job_free() will never get
called. Since drm_sched_job_cleanup() will NULL out the
s_fence, we can use that to detect this case.
Patchwork: https://patchwork.freedesktop.org/patch/653584/
In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Fix another leak in the submit error path
put_unused_fd() doesn't free the installed file, if we've already done
fd_install(). So we need to also free the sync_file.
Patchwork: https://patchwork.freedesktop.org/patch/653583/
In the Linux kernel, the following vulnerability has been resolved:
genirq/irq_sim: Initialize work context pointers properly
Initialize `ops` member's pointers properly by using kzalloc() instead of
kmalloc() when allocating the simulation work context. Otherwise the
pointers contain random content leading to invalid dereferencing.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath6kl: remove WARN on bad firmware input
If the firmware gives bad input, that's nothing to do with
the driver's stack at this point etc., so the WARN_ON()
doesn't add any value. Additionally, this is one of the
top syzbot reports now. Just print a message, and as an
added bonus, print the sizes too.
In the Linux kernel, the following vulnerability has been resolved:
nvmet: fix memory leak of bio integrity
If nvmet receives commands with metadata there is a continuous memory
leak of kmalloc-128 slab or more precisely bio->bi_integrity.
Since commit bf4c89fc8797 ("block: don't call bio_uninit from bio_endio")
each user of bio_init has to use bio_uninit as well. Otherwise the bio
integrity is not getting free. Nvmet uses bio_init for inline bios.
Uninit the inline bio to complete deallocation of integrity in bio.
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: displayport: Fix potential deadlock
The deadlock can occur due to a recursive lock acquisition of
`cros_typec_altmode_data::mutex`.
The call chain is as follows:
1. cros_typec_altmode_work() acquires the mutex
2. typec_altmode_vdm() -> dp_altmode_vdm() ->
3. typec_altmode_exit() -> cros_typec_altmode_exit()
4. cros_typec_altmode_exit() attempts to acquire the mutex again
To prevent this, defer the `typec_altmode_exit()` call by scheduling
it rather than calling it directly from within the mutex-protected
context.
In the Linux kernel, the following vulnerability has been resolved:
vsock/vmci: Clear the vmci transport packet properly when initializing it
In vmci_transport_packet_init memset the vmci_transport_packet before
populating the fields to avoid any uninitialised data being left in the
structure.
A reflected cross-site scripting (XSS) vulnerability exists in Institute-of-Current-Students v1.0 via the email parameter in the /postquerypublic endpoint. The application fails to properly sanitize user input before reflecting it in the HTML response. This allows unauthenticated attackers to inject and execute arbitrary JavaScript code in the context of the victim's browser by tricking them into visiting a crafted URL or submitting a malicious form. Successful exploitation may lead to session hijacking, credential theft, or other client-side attacks.
In the Linux kernel, the following vulnerability has been resolved:
mtk-sd: Prevent memory corruption from DMA map failure
If msdc_prepare_data() fails to map the DMA region, the request is
not prepared for data receiving, but msdc_start_data() proceeds
the DMA with previous setting.
Since this will lead a memory corruption, we have to stop the
request operation soon after the msdc_prepare_data() fails to
prepare it.
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Fix NULL pointer dereference in core_scsi3_decode_spec_i_port()
The function core_scsi3_decode_spec_i_port(), in its error code path,
unconditionally calls core_scsi3_lunacl_undepend_item() passing the
dest_se_deve pointer, which may be NULL.
This can lead to a NULL pointer dereference if dest_se_deve remains
unset.
SPC-3 PR SPEC_I_PT: Unable to locate dest_tpg
Unable to handle kernel paging request at virtual address dfff800000000012
Call trace:
core_scsi3_lunacl_undepend_item+0x2c/0xf0 [target_core_mod] (P)
core_scsi3_decode_spec_i_port+0x120c/0x1c30 [target_core_mod]
core_scsi3_emulate_pro_register+0x6b8/0xcd8 [target_core_mod]
target_scsi3_emulate_pr_out+0x56c/0x840 [target_core_mod]
Fix this by adding a NULL check before calling
core_scsi3_lunacl_undepend_item()
In the Linux kernel, the following vulnerability has been resolved:
spi: spi-qpic-snand: reallocate BAM transactions
Using the mtd_nandbiterrs module for testing the driver occasionally
results in weird things like below.
1. swiotlb mapping fails with the following message:
[ 85.926216] qcom_snand 79b0000.spi: swiotlb buffer is full (sz: 4294967294 bytes), total 512 (slots), used 0 (slots)
[ 85.932937] qcom_snand 79b0000.spi: failure in mapping desc
[ 87.999314] qcom_snand 79b0000.spi: failure to write raw page
[ 87.999352] mtd_nandbiterrs: error: write_oob failed (-110)
Rebooting the board after this causes a panic due to a NULL pointer
dereference.
2. If the swiotlb mapping does not fail, rebooting the board may result
in a different panic due to a bad spinlock magic:
[ 256.104459] BUG: spinlock bad magic on CPU#3, procd/2241
[ 256.104488] Unable to handle kernel paging request at virtual address ffffffff0000049b
...
Investigating the issue revealed that these symptoms are results of
memory corruption which is caused by out of bounds access within the
driver.
The driver uses a dynamically allocated structure for BAM transactions,
which structure must have enough space for all possible variations of
different flash operations initiated by the driver. The required space
heavily depends on the actual number of 'codewords' which is calculated
from the pagesize of the actual NAND chip.
Although the qcom_nandc_alloc() function allocates memory for the BAM
transactions during probe, but since the actual number of 'codewords'
is not yet know the allocation is done for one 'codeword' only.
Because of this, whenever the driver does a flash operation, and the
number of the required transactions exceeds the size of the allocated
arrays the driver accesses memory out of the allocated range.
To avoid this, change the code to free the initially allocated BAM
transactions memory, and allocate a new one once the actual number of
'codewords' required for a given NAND chip is known.
In the Linux kernel, the following vulnerability has been resolved:
fs: export anon_inode_make_secure_inode() and fix secretmem LSM bypass
Export anon_inode_make_secure_inode() to allow KVM guest_memfd to create
anonymous inodes with proper security context. This replaces the current
pattern of calling alloc_anon_inode() followed by
inode_init_security_anon() for creating security context manually.
This change also fixes a security regression in secretmem where the
S_PRIVATE flag was not cleared after alloc_anon_inode(), causing
LSM/SELinux checks to be bypassed for secretmem file descriptors.
As guest_memfd currently resides in the KVM module, we need to export this
symbol for use outside the core kernel. In the future, guest_memfd might be
moved to core-mm, at which point the symbols no longer would have to be
exported. When/if that happens is still unclear.
In the Linux kernel, the following vulnerability has been resolved:
regulator: gpio: Fix the out-of-bounds access to drvdata::gpiods
drvdata::gpiods is supposed to hold an array of 'gpio_desc' pointers. But
the memory is allocated for only one pointer. This will lead to
out-of-bounds access later in the code if 'config::ngpios' is > 1. So
fix the code to allocate enough memory to hold 'config::ngpios' of GPIO
descriptors.
While at it, also move the check for memory allocation failure to be below
the allocation to make it more readable.
In the Linux kernel, the following vulnerability has been resolved:
HID: appletb-kbd: fix memory corruption of input_handler_list
In appletb_kbd_probe an input handler is initialised and then registered
with input core through input_register_handler(). When this happens input
core will add the input handler (specifically its node) to the global
input_handler_list. The input_handler_list is central to the functionality
of input core and is traversed in various places in input core. An example
of this is when a new input device is plugged in and gets registered with
input core.
The input_handler in probe is allocated as device managed memory. If a
probe failure occurs after input_register_handler() the input_handler
memory is freed, yet it will remain in the input_handler_list. This
effectively means the input_handler_list contains a dangling pointer
to data belonging to a freed input handler.
This causes an issue when any other input device is plugged in - in my
case I had an old PixArt HP USB optical mouse and I decided to
plug it in after a failure occurred after input_register_handler().
This lead to the registration of this input device via
input_register_device which involves traversing over every handler
in the corrupted input_handler_list and calling input_attach_handler(),
giving each handler a chance to bind to newly registered device.
The core of this bug is a UAF which causes memory corruption of
input_handler_list and to fix it we must ensure the input handler is
unregistered from input core, this is done through
input_unregister_handler().
[ 63.191597] ==================================================================
[ 63.192094] BUG: KASAN: slab-use-after-free in input_attach_handler.isra.0+0x1a9/0x1e0
[ 63.192094] Read of size 8 at addr ffff888105ea7c80 by task kworker/0:2/54
[ 63.192094]
[ 63.192094] CPU: 0 UID: 0 PID: 54 Comm: kworker/0:2 Not tainted 6.16.0-rc2-00321-g2aa6621d
[ 63.192094] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.164
[ 63.192094] Workqueue: usb_hub_wq hub_event
[ 63.192094] Call Trace:
[ 63.192094] <TASK>
[ 63.192094] dump_stack_lvl+0x53/0x70
[ 63.192094] print_report+0xce/0x670
[ 63.192094] kasan_report+0xce/0x100
[ 63.192094] input_attach_handler.isra.0+0x1a9/0x1e0
[ 63.192094] input_register_device+0x76c/0xd00
[ 63.192094] hidinput_connect+0x686d/0xad60
[ 63.192094] hid_connect+0xf20/0x1b10
[ 63.192094] hid_hw_start+0x83/0x100
[ 63.192094] hid_device_probe+0x2d1/0x680
[ 63.192094] really_probe+0x1c3/0x690
[ 63.192094] __driver_probe_device+0x247/0x300
[ 63.192094] driver_probe_device+0x49/0x210
[ 63.192094] __device_attach_driver+0x160/0x320
[ 63.192094] bus_for_each_drv+0x10f/0x190
[ 63.192094] __device_attach+0x18e/0x370
[ 63.192094] bus_probe_device+0x123/0x170
[ 63.192094] device_add+0xd4d/0x1460
[ 63.192094] hid_add_device+0x30b/0x910
[ 63.192094] usbhid_probe+0x920/0xe00
[ 63.192094] usb_probe_interface+0x363/0x9a0
[ 63.192094] really_probe+0x1c3/0x690
[ 63.192094] __driver_probe_device+0x247/0x300
[ 63.192094] driver_probe_device+0x49/0x210
[ 63.192094] __device_attach_driver+0x160/0x320
[ 63.192094] bus_for_each_drv+0x10f/0x190
[ 63.192094] __device_attach+0x18e/0x370
[ 63.192094] bus_probe_device+0x123/0x170
[ 63.192094] device_add+0xd4d/0x1460
[ 63.192094] usb_set_configuration+0xd14/0x1880
[ 63.192094] usb_generic_driver_probe+0x78/0xb0
[ 63.192094] usb_probe_device+0xaa/0x2e0
[ 63.192094] really_probe+0x1c3/0x690
[ 63.192094] __driver_probe_device+0x247/0x300
[ 63.192094] driver_probe_device+0x49/0x210
[ 63.192094] __device_attach_driver+0x160/0x320
[ 63.192094] bus_for_each_drv+0x10f/0x190
[ 63.192094] __device_attach+0x18e/0x370
[ 63.192094] bus_probe_device+0x123/0x170
[ 63.192094] device_add+0xd4d/0x1460
[ 63.192094] usb_new_device+0x7b4/0x1000
[ 63.192094] hub_event+0x234d/0x3
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
NFSv4/pNFS: Fix a race to wake on NFS_LAYOUT_DRAIN
We found a few different systems hung up in writeback waiting on the same
page lock, and one task waiting on the NFS_LAYOUT_DRAIN bit in
pnfs_update_layout(), however the pnfs_layout_hdr's plh_outstanding count
was zero.
It seems most likely that this is another race between the waiter and waker
similar to commit ed0172af5d6f ("SUNRPC: Fix a race to wake a sync task").
Fix it up by applying the advised barrier.
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: altmodes/displayport: do not index invalid pin_assignments
A poorly implemented DisplayPort Alt Mode port partner can indicate
that its pin assignment capabilities are greater than the maximum
value, DP_PIN_ASSIGN_F. In this case, calls to pin_assignment_show
will cause a BRK exception due to an out of bounds array access.
Prevent for loop in pin_assignment_show from accessing
invalid values in pin_assignments by adding DP_PIN_ASSIGN_MAX
value in typec_dp.h and using i < DP_PIN_ASSIGN_MAX as a loop
condition.