In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi: add a check to handle OOB in sfr region
sfr->buf_size is in shared memory and can be modified by malicious user.
OOB write is possible when the size is made higher than actual sfr data
buffer. Cap the size to allocated size for such cases.
In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi: add check to handle incorrect queue size
qsize represents size of shared queued between driver and video
firmware. Firmware can modify this value to an invalid large value. In
such situation, empty_space will be bigger than the space actually
available. Since new_wr_idx is not checked, so the following code will
result in an OOB write.
...
qsize = qhdr->q_size
if (wr_idx >= rd_idx)
empty_space = qsize - (wr_idx - rd_idx)
....
if (new_wr_idx < qsize) {
memcpy(wr_ptr, packet, dwords << 2) --> OOB write
Add check to ensure qsize is within the allocated size while
reading and writing packets into the queue.
In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi_parser: add check to avoid out of bound access
There is a possibility that init_codecs is invoked multiple times during
manipulated payload from video firmware. In such case, if codecs_count
can get incremented to value more than MAX_CODEC_NUM, there can be OOB
access. Reset the count so that it always starts from beginning.
In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi_parser: refactor hfi packet parsing logic
words_count denotes the number of words in total payload, while data
points to payload of various property within it. When words_count
reaches last word, data can access memory beyond the total payload. This
can lead to OOB access. With this patch, the utility api for handling
individual properties now returns the size of data consumed. Accordingly
remaining bytes are calculated before parsing the payload, thereby
eliminates the OOB access possibilities.
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: Fix accessing freed irq affinity_hint
In stmmac_request_irq_multi_msi(), a pointer to the stack variable
cpu_mask is passed to irq_set_affinity_hint(). This value is stored in
irq_desc->affinity_hint, but once stmmac_request_irq_multi_msi()
returns, the pointer becomes dangling.
The affinity_hint is exposed via procfs with S_IRUGO permissions,
allowing any unprivileged process to read it. Accessing this stale
pointer can lead to:
- a kernel oops or panic if the referenced memory has been released and
unmapped, or
- leakage of kernel data into userspace if the memory is re-used for
other purposes.
All platforms that use stmmac with PCI MSI (Intel, Loongson, etc) are
affected.
In the Linux kernel, the following vulnerability has been resolved:
io_uring/net: fix io_req_post_cqe abuse by send bundle
[ 114.987980][ T5313] WARNING: CPU: 6 PID: 5313 at io_uring/io_uring.c:872 io_req_post_cqe+0x12e/0x4f0
[ 114.991597][ T5313] RIP: 0010:io_req_post_cqe+0x12e/0x4f0
[ 115.001880][ T5313] Call Trace:
[ 115.002222][ T5313] <TASK>
[ 115.007813][ T5313] io_send+0x4fe/0x10f0
[ 115.009317][ T5313] io_issue_sqe+0x1a6/0x1740
[ 115.012094][ T5313] io_wq_submit_work+0x38b/0xed0
[ 115.013223][ T5313] io_worker_handle_work+0x62a/0x1600
[ 115.013876][ T5313] io_wq_worker+0x34f/0xdf0
As the comment states, io_req_post_cqe() should only be used by
multishot requests, i.e. REQ_F_APOLL_MULTISHOT, which bundled sends are
not. Add a flag signifying whether a request wants to post multiple
CQEs. Eventually REQ_F_APOLL_MULTISHOT should imply the new flag, but
that's left out for simplicity.
In the Linux kernel, the following vulnerability has been resolved:
arm/crc-t10dif: fix use of out-of-scope array in crc_t10dif_arch()
Fix a silly bug where an array was used outside of its scope.
In the Linux kernel, the following vulnerability has been resolved:
arm64/crc-t10dif: fix use of out-of-scope array in crc_t10dif_arch()
Fix a silly bug where an array was used outside of its scope.
In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Fix race between unprepare and queue_buf
A client driver may use mhi_unprepare_from_transfer() to quiesce
incoming data during the client driver's tear down. The client driver
might also be processing data at the same time, resulting in a call to
mhi_queue_buf() which will invoke mhi_gen_tre(). If mhi_gen_tre() runs
after mhi_unprepare_from_transfer() has torn down the channel, a panic
will occur due to an invalid dereference leading to a page fault.
This occurs because mhi_gen_tre() does not verify the channel state
after locking it. Fix this by having mhi_gen_tre() confirm the channel
state is valid, or return error to avoid accessing deinitialized data.
[mani: added stable tag]
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one error in do_split
Syzkaller detected a use-after-free issue in ext4_insert_dentry that was
caused by out-of-bounds access due to incorrect splitting in do_split.
BUG: KASAN: use-after-free in ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
Write of size 251 at addr ffff888074572f14 by task syz-executor335/5847
CPU: 0 UID: 0 PID: 5847 Comm: syz-executor335 Not tainted 6.12.0-rc6-syzkaller-00318-ga9cda7c0ffed #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x40/0x70 mm/kasan/shadow.c:106
ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
add_dirent_to_buf+0x3d9/0x750 fs/ext4/namei.c:2154
make_indexed_dir+0xf98/0x1600 fs/ext4/namei.c:2351
ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2455
ext4_add_nondir+0x8d/0x290 fs/ext4/namei.c:2796
ext4_symlink+0x920/0xb50 fs/ext4/namei.c:3431
vfs_symlink+0x137/0x2e0 fs/namei.c:4615
do_symlinkat+0x222/0x3a0 fs/namei.c:4641
__do_sys_symlink fs/namei.c:4662 [inline]
__se_sys_symlink fs/namei.c:4660 [inline]
__x64_sys_symlink+0x7a/0x90 fs/namei.c:4660
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
The following loop is located right above 'if' statement.
for (i = count-1; i >= 0; i--) {
/* is more than half of this entry in 2nd half of the block? */
if (size + map[i].size/2 > blocksize/2)
break;
size += map[i].size;
move++;
}
'i' in this case could go down to -1, in which case sum of active entries
wouldn't exceed half the block size, but previous behaviour would also do
split in half if sum would exceed at the very last block, which in case of
having too many long name files in a single block could lead to
out-of-bounds access and following use-after-free.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
soc: samsung: exynos-chipid: Add NULL pointer check in exynos_chipid_probe()
soc_dev_attr->revision could be NULL, thus,
a pointer check is added to prevent potential NULL pointer dereference.
This is similar to the fix in commit 3027e7b15b02
("ice: Fix some null pointer dereference issues in ice_ptp.c").
This issue is found by our static analysis tool.
In the Linux kernel, the following vulnerability has been resolved:
i3c: Add NULL pointer check in i3c_master_queue_ibi()
The I3C master driver may receive an IBI from a target device that has not
been probed yet. In such cases, the master calls `i3c_master_queue_ibi()`
to queue an IBI work task, leading to "Unable to handle kernel read from
unreadable memory" and resulting in a kernel panic.
Typical IBI handling flow:
1. The I3C master scans target devices and probes their respective drivers.
2. The target device driver calls `i3c_device_request_ibi()` to enable IBI
and assigns `dev->ibi = ibi`.
3. The I3C master receives an IBI from the target device and calls
`i3c_master_queue_ibi()` to queue the target device driver’s IBI
handler task.
However, since target device events are asynchronous to the I3C probe
sequence, step 3 may occur before step 2, causing `dev->ibi` to be `NULL`,
leading to a kernel panic.
Add a NULL pointer check in `i3c_master_queue_ibi()` to prevent accessing
an uninitialized `dev->ibi`, ensuring stability.
In the Linux kernel, the following vulnerability has been resolved:
mfd: ene-kb3930: Fix a potential NULL pointer dereference
The off_gpios could be NULL. Add missing check in the kb3930_probe().
This is similar to the issue fixed in commit b1ba8bcb2d1f
("backlight: hx8357: Fix potential NULL pointer dereference").
This was detected by our static analysis tool.
In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix NULL pointer in can_accept_new_subflow
When testing valkey benchmark tool with MPTCP, the kernel panics in
'mptcp_can_accept_new_subflow' because subflow_req->msk is NULL.
Call trace:
mptcp_can_accept_new_subflow (./net/mptcp/subflow.c:63 (discriminator 4)) (P)
subflow_syn_recv_sock (./net/mptcp/subflow.c:854)
tcp_check_req (./net/ipv4/tcp_minisocks.c:863)
tcp_v4_rcv (./net/ipv4/tcp_ipv4.c:2268)
ip_protocol_deliver_rcu (./net/ipv4/ip_input.c:207)
ip_local_deliver_finish (./net/ipv4/ip_input.c:234)
ip_local_deliver (./net/ipv4/ip_input.c:254)
ip_rcv_finish (./net/ipv4/ip_input.c:449)
...
According to the debug log, the same req received two SYN-ACK in a very
short time, very likely because the client retransmits the syn ack due
to multiple reasons.
Even if the packets are transmitted with a relevant time interval, they
can be processed by the server on different CPUs concurrently). The
'subflow_req->msk' ownership is transferred to the subflow the first,
and there will be a risk of a null pointer dereference here.
This patch fixes this issue by moving the 'subflow_req->msk' under the
`own_req == true` conditional.
Note that the !msk check in subflow_hmac_valid() can be dropped, because
the same check already exists under the own_req mpj branch where the
code has been moved to.
In the Linux kernel, the following vulnerability has been resolved:
backlight: led_bl: Hold led_access lock when calling led_sysfs_disable()
Lockdep detects the following issue on led-backlight removal:
[ 142.315935] ------------[ cut here ]------------
[ 142.315954] WARNING: CPU: 2 PID: 292 at drivers/leds/led-core.c:455 led_sysfs_enable+0x54/0x80
...
[ 142.500725] Call trace:
[ 142.503176] led_sysfs_enable+0x54/0x80 (P)
[ 142.507370] led_bl_remove+0x80/0xa8 [led_bl]
[ 142.511742] platform_remove+0x30/0x58
[ 142.515501] device_remove+0x54/0x90
...
Indeed, led_sysfs_enable() has to be called with the led_access
lock held.
Hold the lock when calling led_sysfs_disable().
In the Linux kernel, the following vulnerability has been resolved:
net: Fix null-ptr-deref by sock_lock_init_class_and_name() and rmmod.
When I ran the repro [0] and waited a few seconds, I observed two
LOCKDEP splats: a warning immediately followed by a null-ptr-deref. [1]
Reproduction Steps:
1) Mount CIFS
2) Add an iptables rule to drop incoming FIN packets for CIFS
3) Unmount CIFS
4) Unload the CIFS module
5) Remove the iptables rule
At step 3), the CIFS module calls sock_release() for the underlying
TCP socket, and it returns quickly. However, the socket remains in
FIN_WAIT_1 because incoming FIN packets are dropped.
At this point, the module's refcnt is 0 while the socket is still
alive, so the following rmmod command succeeds.
# ss -tan
State Recv-Q Send-Q Local Address:Port Peer Address:Port
FIN-WAIT-1 0 477 10.0.2.15:51062 10.0.0.137:445
# lsmod | grep cifs
cifs 1159168 0
This highlights a discrepancy between the lifetime of the CIFS module
and the underlying TCP socket. Even after CIFS calls sock_release()
and it returns, the TCP socket does not die immediately in order to
close the connection gracefully.
While this is generally fine, it causes an issue with LOCKDEP because
CIFS assigns a different lock class to the TCP socket's sk->sk_lock
using sock_lock_init_class_and_name().
Once an incoming packet is processed for the socket or a timer fires,
sk->sk_lock is acquired.
Then, LOCKDEP checks the lock context in check_wait_context(), where
hlock_class() is called to retrieve the lock class. However, since
the module has already been unloaded, hlock_class() logs a warning
and returns NULL, triggering the null-ptr-deref.
If LOCKDEP is enabled, we must ensure that a module calling
sock_lock_init_class_and_name() (CIFS, NFS, etc) cannot be unloaded
while such a socket is still alive to prevent this issue.
Let's hold the module reference in sock_lock_init_class_and_name()
and release it when the socket is freed in sk_prot_free().
Note that sock_lock_init() clears sk->sk_owner for svc_create_socket()
that calls sock_lock_init_class_and_name() for a listening socket,
which clones a socket by sk_clone_lock() without GFP_ZERO.
[0]:
CIFS_SERVER="10.0.0.137"
CIFS_PATH="//${CIFS_SERVER}/Users/Administrator/Desktop/CIFS_TEST"
DEV="enp0s3"
CRED="/root/WindowsCredential.txt"
MNT=$(mktemp -d /tmp/XXXXXX)
mount -t cifs ${CIFS_PATH} ${MNT} -o vers=3.0,credentials=${CRED},cache=none,echo_interval=1
iptables -A INPUT -s ${CIFS_SERVER} -j DROP
for i in $(seq 10);
do
umount ${MNT}
rmmod cifs
sleep 1
done
rm -r ${MNT}
iptables -D INPUT -s ${CIFS_SERVER} -j DROP
[1]:
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 10 PID: 0 at kernel/locking/lockdep.c:234 hlock_class (kernel/locking/lockdep.c:234 kernel/locking/lockdep.c:223)
Modules linked in: cifs_arc4 nls_ucs2_utils cifs_md4 [last unloaded: cifs]
CPU: 10 UID: 0 PID: 0 Comm: swapper/10 Not tainted 6.14.0 #36
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:hlock_class (kernel/locking/lockdep.c:234 kernel/locking/lockdep.c:223)
...
Call Trace:
<IRQ>
__lock_acquire (kernel/locking/lockdep.c:4853 kernel/locking/lockdep.c:5178)
lock_acquire (kernel/locking/lockdep.c:469 kernel/locking/lockdep.c:5853 kernel/locking/lockdep.c:5816)
_raw_spin_lock_nested (kernel/locking/spinlock.c:379)
tcp_v4_rcv (./include/linux/skbuff.h:1678 ./include/net/tcp.h:2547 net/ipv4/tcp_ipv4.c:2350)
...
BUG: kernel NULL pointer dereference, address: 00000000000000c4
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 10 UID: 0 PID: 0 Comm: swapper/10 Tainted: G W 6.14.0 #36
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__lock_acquire (kernel/
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
sctp: detect and prevent references to a freed transport in sendmsg
sctp_sendmsg() re-uses associations and transports when possible by
doing a lookup based on the socket endpoint and the message destination
address, and then sctp_sendmsg_to_asoc() sets the selected transport in
all the message chunks to be sent.
There's a possible race condition if another thread triggers the removal
of that selected transport, for instance, by explicitly unbinding an
address with setsockopt(SCTP_SOCKOPT_BINDX_REM), after the chunks have
been set up and before the message is sent. This can happen if the send
buffer is full, during the period when the sender thread temporarily
releases the socket lock in sctp_wait_for_sndbuf().
This causes the access to the transport data in
sctp_outq_select_transport(), when the association outqueue is flushed,
to result in a use-after-free read.
This change avoids this scenario by having sctp_transport_free() signal
the freeing of the transport, tagging it as "dead". In order to do this,
the patch restores the "dead" bit in struct sctp_transport, which was
removed in
commit 47faa1e4c50e ("sctp: remove the dead field of sctp_transport").
Then, in the scenario where the sender thread has released the socket
lock in sctp_wait_for_sndbuf(), the bit is checked again after
re-acquiring the socket lock to detect the deletion. This is done while
holding a reference to the transport to prevent it from being freed in
the process.
If the transport was deleted while the socket lock was relinquished,
sctp_sendmsg_to_asoc() will return -EAGAIN to let userspace retry the
send.
The bug was found by a private syzbot instance (see the error report [1]
and the C reproducer that triggers it [2]).
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Acquire SRCU in KVM_GET_MP_STATE to protect guest memory accesses
Acquire a lock on kvm->srcu when userspace is getting MP state to handle a
rather extreme edge case where "accepting" APIC events, i.e. processing
pending INIT or SIPI, can trigger accesses to guest memory. If the vCPU
is in L2 with INIT *and* a TRIPLE_FAULT request pending, then getting MP
state will trigger a nested VM-Exit by way of ->check_nested_events(), and
emuating the nested VM-Exit can access guest memory.
The splat was originally hit by syzkaller on a Google-internal kernel, and
reproduced on an upstream kernel by hacking the triple_fault_event_test
selftest to stuff a pending INIT, store an MSR on VM-Exit (to generate a
memory access on VMX), and do vcpu_mp_state_get() to trigger the scenario.
=============================
WARNING: suspicious RCU usage
6.14.0-rc3-b112d356288b-vmx/pi_lockdep_false_pos-lock #3 Not tainted
-----------------------------
include/linux/kvm_host.h:1058 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by triple_fault_ev/1256:
#0: ffff88810df5a330 (&vcpu->mutex){+.+.}-{4:4}, at: kvm_vcpu_ioctl+0x8b/0x9a0 [kvm]
stack backtrace:
CPU: 11 UID: 1000 PID: 1256 Comm: triple_fault_ev Not tainted 6.14.0-rc3-b112d356288b-vmx #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x7f/0x90
lockdep_rcu_suspicious+0x144/0x190
kvm_vcpu_gfn_to_memslot+0x156/0x180 [kvm]
kvm_vcpu_read_guest+0x3e/0x90 [kvm]
read_and_check_msr_entry+0x2e/0x180 [kvm_intel]
__nested_vmx_vmexit+0x550/0xde0 [kvm_intel]
kvm_check_nested_events+0x1b/0x30 [kvm]
kvm_apic_accept_events+0x33/0x100 [kvm]
kvm_arch_vcpu_ioctl_get_mpstate+0x30/0x1d0 [kvm]
kvm_vcpu_ioctl+0x33e/0x9a0 [kvm]
__x64_sys_ioctl+0x8b/0xb0
do_syscall_64+0x6c/0x170
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
misc: pci_endpoint_test: Avoid issue of interrupts remaining after request_irq error
After devm_request_irq() fails with error in pci_endpoint_test_request_irq(),
the pci_endpoint_test_free_irq_vectors() is called assuming that all IRQs
have been released.
However, some requested IRQs remain unreleased, so there are still
/proc/irq/* entries remaining, and this results in WARN() with the
following message:
remove_proc_entry: removing non-empty directory 'irq/30', leaking at least 'pci-endpoint-test.0'
WARNING: CPU: 0 PID: 202 at fs/proc/generic.c:719 remove_proc_entry +0x190/0x19c
To solve this issue, set the number of remaining IRQs to test->num_irqs,
and release IRQs in advance by calling pci_endpoint_test_release_irq().
[kwilczynski: commit log]
Exposure of sensitive information to local unauthorized actors in Elastic Agent and Elastic Security Endpoint can lead to loss of confidentiality and impersonation of Endpoint to the Elastic Stack. This issue was identified by Elastic engineers and Elastic has no indication that it is known or has been exploited by malicious actors.
OpenFGA is a high-performance and flexible authorization/permission engine built for developers and inspired by Google Zanzibar. OpenFGA v1.8.10 to v1.3.6 (Helm chart <= openfga-0.2.28, docker <= v.1.8.10) are vulnerable to authorization bypass when certain Check and ListObject calls are executed. This issue has been patched in version 1.8.11.
An unrestricted file upload vulnerability in ShowDoc caused by improper validation of file extension allows execution of arbitrary PHP, leading to remote code execution.This issue affects ShowDoc: before 2.8.7.
Improper sanitization of the value of the 'href' and 'xlink:href' attributes in '<image>' SVG elements in AngularJS allows attackers to bypass common image source restrictions. This can lead to a form of Content Spoofing https://owasp.org/www-community/attacks/Content_Spoofing and also negatively affect the application's performance and behavior by using too large or slow-to-load images.
This issue affects all versions of AngularJS.
Note:
The AngularJS project is End-of-Life and will not receive any updates to address this issue. For more information see here https://docs.angularjs.org/misc/version-support-status .
A vulnerability classified as critical was found in code-projects Simple Movie Ticket Booking System 1.0. Affected by this vulnerability is the function changeprize. The manipulation of the argument prize leads to stack-based buffer overflow. The attack needs to be approached locally. The exploit has been disclosed to the public and may be used.
Bookgy does not provide for proper authorisation control in multiple areas of the application. This deficiency could allow a malicious actor, without authentication, to reach private areas and/or areas intended for other roles.
SQL injection vulnerability in Bookgy. This vulnerability could allow an attacker to retrieve, create, update and delete databases by sending an HTTP request through the "IDRESERVA" parameter in /bkg_imprimir_comprobante.php
SQL injection vulnerability in Bookgy. This vulnerability could allow an attacker to retrieve, create, update and delete databases by sending an HTTP request through the "IDTIPO", "IDPISTA" and "IDSOCIO" parameters in /bkg_seleccionar_hora_ajax.php.
Reflected Cross-Site Scripting (XSS) vulnerability in Bookgy. This vulnerability allows an attacker to execute JavaScript code in the victim's browser by sending a malicious URL through the "IDRESERVA" parameter in /bkg_imprimir_comprobante.php.
Reflected Cross-Site Scripting (XSS) vulnerability in Bookgy. This vulnerability allows an attacker to execute JavaScript code in the victim's browser by sending a malicious URL through the "TEXTO" parameter in /api/api_ajustes.php.
Memory safety bug present in Firefox ESR 128.9, and Thunderbird 128.9. This bug showed evidence of memory corruption and we presume that with enough effort this could have been exploited to run arbitrary code. This vulnerability affects Firefox ESR < 128.10 and Thunderbird < 128.10.
Memory safety bugs present in Firefox 137, Thunderbird 137, Firefox ESR 128.9, and Thunderbird 128.9. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Thunderbird < 138, and Thunderbird < 128.10.
A vulnerability was identified in Thunderbird where XPath parsing could trigger undefined behavior due to missing null checks during attribute access. This could lead to out-of-bounds read access and potentially, memory corruption. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Thunderbird < 138, and Thunderbird < 128.10.
Due to insufficient escaping of the special characters in the "copy as cURL" feature, an attacker could trick a user into using this command, potentially leading to local code execution on the user's system.
*This bug only affects Firefox for Windows. Other versions of Firefox are unaffected.* This vulnerability affects Firefox ESR < 128.10, Firefox ESR < 115.23, and Thunderbird < 128.10.
A process isolation vulnerability in Thunderbird stemmed from improper handling of javascript: URIs, which could allow content to execute in the top-level document's process instead of the intended frame, potentially enabling a sandbox escape. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Firefox ESR < 115.23, Thunderbird < 138, and Thunderbird < 128.10.
Modification of specific WebGL shader attributes could trigger an out-of-bounds read, which, when chained with other vulnerabilities, could be used to escalate privileges.
*This bug only affects Thunderbird for macOS. Other versions of Thunderbird are unaffected.* This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Firefox ESR < 115.23, Thunderbird < 138, and Thunderbird < 128.10.
Thunderbird's update mechanism allowed a medium-integrity user process to interfere with the SYSTEM-level updater by manipulating the file-locking behavior. By injecting code into the user-privileged process, an attacker could bypass intended access controls, allowing SYSTEM-level file operations on paths controlled by a non-privileged user and enabling privilege escalation. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Firefox ESR < 115.23, Thunderbird < 138, and Thunderbird < 128.10.
In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: Fix packet corruption in vmxnet3_xdp_xmit_frame
Andrew and Nikolay reported connectivity issues with Cilium's service
load-balancing in case of vmxnet3.
If a BPF program for native XDP adds an encapsulation header such as
IPIP and transmits the packet out the same interface, then in case
of vmxnet3 a corrupted packet is being sent and subsequently dropped
on the path.
vmxnet3_xdp_xmit_frame() which is called e.g. via vmxnet3_run_xdp()
through vmxnet3_xdp_xmit_back() calculates an incorrect DMA address:
page = virt_to_page(xdpf->data);
tbi->dma_addr = page_pool_get_dma_addr(page) +
VMXNET3_XDP_HEADROOM;
dma_sync_single_for_device(&adapter->pdev->dev,
tbi->dma_addr, buf_size,
DMA_TO_DEVICE);
The above assumes a fixed offset (VMXNET3_XDP_HEADROOM), but the XDP
BPF program could have moved xdp->data. While the passed buf_size is
correct (xdpf->len), the dma_addr needs to have a dynamic offset which
can be calculated as xdpf->data - (void *)xdpf, that is, xdp->data -
xdp->data_hard_start.
A use-after-free issue was addressed with improved memory management. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sonoma 14.7.5, iOS 18.4 and iPadOS 18.4, visionOS 2.4. An attacker on the local network may be able to corrupt process memory.
An authentication issue was addressed with improved state management. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sonoma 14.7.5, iOS 18.4 and iPadOS 18.4, visionOS 2.4. An attacker on the local network may be able to bypass authentication policy.
A vulnerability was found in code-projects ATM Banking 1.0. It has been classified as critical. Affected is the function moneyDeposit/moneyWithdraw. The manipulation leads to business logic errors. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used.