In the Linux kernel, the following vulnerability has been resolved:
pfcp: Destroy device along with udp socket's netns dismantle.
pfcp_newlink() links the device to a list in dev_net(dev) instead
of net, where a udp tunnel socket is created.
Even when net is removed, the device stays alive on dev_net(dev).
Then, removing net triggers the splat below. [0]
In this example, pfcp0 is created in ns2, but the udp socket is
created in ns1.
ip netns add ns1
ip netns add ns2
ip -n ns1 link add netns ns2 name pfcp0 type pfcp
ip netns del ns1
Let's link the device to the socket's netns instead.
Now, pfcp_net_exit() needs another netdev iteration to remove
all pfcp devices in the netns.
pfcp_dev_list is not used under RCU, so the list API is converted
to the non-RCU variant.
pfcp_net_exit() can be converted to .exit_batch_rtnl() in net-next.
[0]:
ref_tracker: net notrefcnt@00000000128b34dc has 1/1 users at
sk_alloc (./include/net/net_namespace.h:345 net/core/sock.c:2236)
inet_create (net/ipv4/af_inet.c:326 net/ipv4/af_inet.c:252)
__sock_create (net/socket.c:1558)
udp_sock_create4 (net/ipv4/udp_tunnel_core.c:18)
pfcp_create_sock (drivers/net/pfcp.c:168)
pfcp_newlink (drivers/net/pfcp.c:182 drivers/net/pfcp.c:197)
rtnl_newlink (net/core/rtnetlink.c:3786 net/core/rtnetlink.c:3897 net/core/rtnetlink.c:4012)
rtnetlink_rcv_msg (net/core/rtnetlink.c:6922)
netlink_rcv_skb (net/netlink/af_netlink.c:2542)
netlink_unicast (net/netlink/af_netlink.c:1321 net/netlink/af_netlink.c:1347)
netlink_sendmsg (net/netlink/af_netlink.c:1891)
____sys_sendmsg (net/socket.c:711 net/socket.c:726 net/socket.c:2583)
___sys_sendmsg (net/socket.c:2639)
__sys_sendmsg (net/socket.c:2669)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
WARNING: CPU: 1 PID: 11 at lib/ref_tracker.c:179 ref_tracker_dir_exit (lib/ref_tracker.c:179)
Modules linked in:
CPU: 1 UID: 0 PID: 11 Comm: kworker/u16:0 Not tainted 6.13.0-rc5-00147-g4c1224501e9d #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Workqueue: netns cleanup_net
RIP: 0010:ref_tracker_dir_exit (lib/ref_tracker.c:179)
Code: 00 00 00 fc ff df 4d 8b 26 49 bd 00 01 00 00 00 00 ad de 4c 39 f5 0f 85 df 00 00 00 48 8b 74 24 08 48 89 df e8 a5 cc 12 02 90 <0f> 0b 90 48 8d 6b 44 be 04 00 00 00 48 89 ef e8 80 de 67 ff 48 89
RSP: 0018:ff11000007f3fb60 EFLAGS: 00010286
RAX: 00000000000020ef RBX: ff1100000d6481e0 RCX: 1ffffffff0e40d82
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff8423ee3c
RBP: ff1100000d648230 R08: 0000000000000001 R09: fffffbfff0e395af
R10: 0000000000000001 R11: 0000000000000000 R12: ff1100000d648230
R13: dead000000000100 R14: ff1100000d648230 R15: dffffc0000000000
FS: 0000000000000000(0000) GS:ff1100006ce80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005620e1363990 CR3: 000000000eeb2002 CR4: 0000000000771ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __warn (kernel/panic.c:748)
? ref_tracker_dir_exit (lib/ref_tracker.c:179)
? report_bug (lib/bug.c:201 lib/bug.c:219)
? handle_bug (arch/x86/kernel/traps.c:285)
? exc_invalid_op (arch/x86/kernel/traps.c:309 (discriminator 1))
? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621)
? _raw_spin_unlock_irqrestore (./arch/x86/include/asm/irqflags.h:42 ./arch/x86/include/asm/irqflags.h:97 ./arch/x86/include/asm/irqflags.h:155 ./include/linux/spinlock_api_smp.h:151 kernel/locking/spinlock.c:194)
? ref_tracker_dir_exit (lib/ref_tracker.c:179)
? __pfx_ref_tracker_dir_exit (lib/ref_tracker.c:158)
? kfree (mm/slub.c:4613 mm/slub.c:4761)
net_free (net/core/net_namespace.c:476 net/core/net_namespace.c:467)
cleanup_net (net/cor
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
net: fec: handle page_pool_dev_alloc_pages error
The fec_enet_update_cbd function calls page_pool_dev_alloc_pages but did
not handle the case when it returned NULL. There was a WARN_ON(!new_page)
but it would still proceed to use the NULL pointer and then crash.
This case does seem somewhat rare but when the system is under memory
pressure it can happen. One case where I can duplicate this with some
frequency is when writing over a smbd share to a SATA HDD attached to an
imx6q.
Setting /proc/sys/vm/min_free_kbytes to higher values also seems to solve
the problem for my test case. But it still seems wrong that the fec driver
ignores the memory allocation error and can crash.
This commit handles the allocation error by dropping the current packet.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix inversion dependency warning while enabling IPsec tunnel
Attempt to enable IPsec packet offload in tunnel mode in debug kernel
generates the following kernel panic, which is happening due to two
issues:
1. In SA add section, the should be _bh() variant when marking SA mode.
2. There is not needed flush_workqueue in SA delete routine. It is not
needed as at this stage as it is removed from SADB and the running work
will be canceled later in SA free.
=====================================================
WARNING: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected
6.12.0+ #4 Not tainted
-----------------------------------------------------
charon/1337 [HC0[0]:SC0[4]:HE1:SE0] is trying to acquire:
ffff88810f365020 (&xa->xa_lock#24){+.+.}-{3:3}, at: mlx5e_xfrm_del_state+0xca/0x1e0 [mlx5_core]
and this task is already holding:
ffff88813e0f0d48 (&x->lock){+.-.}-{3:3}, at: xfrm_state_delete+0x16/0x30
which would create a new lock dependency:
(&x->lock){+.-.}-{3:3} -> (&xa->xa_lock#24){+.+.}-{3:3}
but this new dependency connects a SOFTIRQ-irq-safe lock:
(&x->lock){+.-.}-{3:3}
... which became SOFTIRQ-irq-safe at:
lock_acquire+0x1be/0x520
_raw_spin_lock_bh+0x34/0x40
xfrm_timer_handler+0x91/0xd70
__hrtimer_run_queues+0x1dd/0xa60
hrtimer_run_softirq+0x146/0x2e0
handle_softirqs+0x266/0x860
irq_exit_rcu+0x115/0x1a0
sysvec_apic_timer_interrupt+0x6e/0x90
asm_sysvec_apic_timer_interrupt+0x16/0x20
default_idle+0x13/0x20
default_idle_call+0x67/0xa0
do_idle+0x2da/0x320
cpu_startup_entry+0x50/0x60
start_secondary+0x213/0x2a0
common_startup_64+0x129/0x138
to a SOFTIRQ-irq-unsafe lock:
(&xa->xa_lock#24){+.+.}-{3:3}
... which became SOFTIRQ-irq-unsafe at:
...
lock_acquire+0x1be/0x520
_raw_spin_lock+0x2c/0x40
xa_set_mark+0x70/0x110
mlx5e_xfrm_add_state+0xe48/0x2290 [mlx5_core]
xfrm_dev_state_add+0x3bb/0xd70
xfrm_add_sa+0x2451/0x4a90
xfrm_user_rcv_msg+0x493/0x880
netlink_rcv_skb+0x12e/0x380
xfrm_netlink_rcv+0x6d/0x90
netlink_unicast+0x42f/0x740
netlink_sendmsg+0x745/0xbe0
__sock_sendmsg+0xc5/0x190
__sys_sendto+0x1fe/0x2c0
__x64_sys_sendto+0xdc/0x1b0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
other info that might help us debug this:
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&xa->xa_lock#24);
local_irq_disable();
lock(&x->lock);
lock(&xa->xa_lock#24);
<Interrupt>
lock(&x->lock);
*** DEADLOCK ***
2 locks held by charon/1337:
#0: ffffffff87f8f858 (&net->xfrm.xfrm_cfg_mutex){+.+.}-{4:4}, at: xfrm_netlink_rcv+0x5e/0x90
#1: ffff88813e0f0d48 (&x->lock){+.-.}-{3:3}, at: xfrm_state_delete+0x16/0x30
the dependencies between SOFTIRQ-irq-safe lock and the holding lock:
-> (&x->lock){+.-.}-{3:3} ops: 29 {
HARDIRQ-ON-W at:
lock_acquire+0x1be/0x520
_raw_spin_lock_bh+0x34/0x40
xfrm_alloc_spi+0xc0/0xe60
xfrm_alloc_userspi+0x5f6/0xbc0
xfrm_user_rcv_msg+0x493/0x880
netlink_rcv_skb+0x12e/0x380
xfrm_netlink_rcv+0x6d/0x90
netlink_unicast+0x42f/0x740
netlink_sendmsg+0x745/0xbe0
__sock_sendmsg+0xc5/0x190
__sys_sendto+0x1fe/0x2c0
__x64_sys_sendto+0xdc/0x1b0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
IN-SOFTIRQ-W at:
lock_acquire+0x1be/0x520
_raw_spin_lock_bh+0x34/0x40
xfrm_timer_handler+0x91/0xd70
__hrtimer_run_queues+0x1dd/0xa60
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
afs: Fix merge preference rule failure condition
syzbot reported a lock held when returning to userspace[1]. This is
because if argc is less than 0 and the function returns directly, the held
inode lock is not released.
Fix this by store the error in ret and jump to done to clean up instead of
returning directly.
[dh: Modified Lizhi Xu's original patch to make it honour the error code
from afs_split_string()]
[1]
WARNING: lock held when returning to user space!
6.13.0-rc3-syzkaller-00209-g499551201b5f #0 Not tainted
------------------------------------------------
syz-executor133/5823 is leaving the kernel with locks still held!
1 lock held by syz-executor133/5823:
#0: ffff888071cffc00 (&sb->s_type->i_mutex_key#9){++++}-{4:4}, at: inode_lock include/linux/fs.h:818 [inline]
#0: ffff888071cffc00 (&sb->s_type->i_mutex_key#9){++++}-{4:4}, at: afs_proc_addr_prefs_write+0x2bb/0x14e0 fs/afs/addr_prefs.c:388
In the Linux kernel, the following vulnerability has been resolved:
zram: fix potential UAF of zram table
If zram_meta_alloc failed early, it frees allocated zram->table without
setting it NULL. Which will potentially cause zram_meta_free to access
the table if user reset an failed and uninitialized device.
In the Linux kernel, the following vulnerability has been resolved:
vsock/bpf: return early if transport is not assigned
Some of the core functions can only be called if the transport
has been assigned.
As Michal reported, a socket might have the transport at NULL,
for example after a failed connect(), causing the following trace:
BUG: kernel NULL pointer dereference, address: 00000000000000a0
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 12faf8067 P4D 12faf8067 PUD 113670067 PMD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 15 UID: 0 PID: 1198 Comm: a.out Not tainted 6.13.0-rc2+
RIP: 0010:vsock_connectible_has_data+0x1f/0x40
Call Trace:
vsock_bpf_recvmsg+0xca/0x5e0
sock_recvmsg+0xb9/0xc0
__sys_recvfrom+0xb3/0x130
__x64_sys_recvfrom+0x20/0x30
do_syscall_64+0x93/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
So we need to check the `vsk->transport` in vsock_bpf_recvmsg(),
especially for connected sockets (stream/seqpacket) as we already
do in __vsock_connectible_recvmsg().
In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: discard packets if the transport changes
If the socket has been de-assigned or assigned to another transport,
we must discard any packets received because they are not expected
and would cause issues when we access vsk->transport.
A possible scenario is described by Hyunwoo Kim in the attached link,
where after a first connect() interrupted by a signal, and a second
connect() failed, we can find `vsk->transport` at NULL, leading to a
NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
iomap: avoid avoid truncating 64-bit offset to 32 bits
on 32-bit kernels, iomap_write_delalloc_scan() was inadvertently using a
32-bit position due to folio_next_index() returning an unsigned long.
This could lead to an infinite loop when writing to an xfs filesystem.
In the Linux kernel, the following vulnerability has been resolved:
vsock: prevent null-ptr-deref in vsock_*[has_data|has_space]
Recent reports have shown how we sometimes call vsock_*_has_data()
when a vsock socket has been de-assigned from a transport (see attached
links), but we shouldn't.
Previous commits should have solved the real problems, but we may have
more in the future, so to avoid null-ptr-deref, we can return 0
(no space, no data available) but with a warning.
This way the code should continue to run in a nearly consistent state
and have a warning that allows us to debug future problems.
In the Linux kernel, the following vulnerability has been resolved:
filemap: avoid truncating 64-bit offset to 32 bits
On 32-bit kernels, folio_seek_hole_data() was inadvertently truncating a
64-bit value to 32 bits, leading to a possible infinite loop when writing
to an xfs filesystem.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of Silicon Labs Gecko OS. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the implementation of the http_download command. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the device.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of Silicon Labs Gecko OS. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of HTTP GET requests. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the device.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of ChargePoint Home Flex charging stations. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of OCPP messages. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root.
This vulnerability allows network-adjacent attackers to compromise transport security on affected installations of ChargePoint Home Flex charging stations. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the CURLOPT_SSL_VERIFYHOST setting. The issue results from the lack of proper validation of the certificate presented by the server. An attacker can leverage this in conjunction with other vulnerabilities to execute code in the context of root.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of ChargePoint Home Flex charging stations. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the wlanchnllst function. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of root.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of ChargePoint Home Flex charging stations. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the SrvrToSmSetAutoChnlListMsg function. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root.
A vulnerability was found in code-projects Chat System up to 1.0. It has been declared as critical. Affected by this vulnerability is an unknown functionality of the file /user/addnewmember.php. The manipulation of the argument user leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
A vulnerability, which was classified as critical, has been found in code-projects Simple Plugins Car Rental Management 1.0. Affected by this issue is some unknown functionality of the file /admin/approve.php. The manipulation of the argument id leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used.
A data exposure vulnerability exists in all versions prior to V15.00.001 of Rockwell Automation FactoryTalk® AssetCentre. The vulnerability exists due to insecure storage of FactoryTalk® Security user tokens, which could allow a threat actor to steal a token and, impersonate another user.
A data exposure vulnerability exists in all versions prior to V15.00.001 of Rockwell Automation FactoryTalk® AssetCentre. The vulnerability exists due to storing credentials in the configuration file of EventLogAttachmentExtractor, ArchiveExtractor, LogCleanUp, or ArchiveLogCleanUp packages.
An encryption vulnerability exists in all versions prior to V15.00.001 of Rockwell Automation FactoryTalk® AssetCentre. The vulnerability exists due to a weak encryption methodology and could allow a threat actor to extract passwords belonging to other users of the application.
A flaw was found in the Wildfly Server Role Based Access Control (RBAC) provider. When authorization to control management operations is secured using the Role Based Access Control provider, a user without the required privileges can suspend or resume the server. A user with a Monitor or Auditor role is supposed to have only read access permissions and should not be able to suspend the server.
The vulnerability is caused by the Suspend and Resume handlers not performing authorization checks to validate whether the current user has the required permissions to proceed with the action.
A Stored Cross-Site Scripting vulnerability has been found in EmbedAI. This vulnerability allows an authenticated attacker to inject a malicious JavaScript code into a message that will be executed when a user opens the chat.
A Reflected Cross-Site Scripting vulnerability has been found in EmbedAI 2.1 and below. This vulnerability allows an authenticated attacker to craft a malicious URL leveraging the"/embedai/users/show/<SCRIPT>" endpoint to inject the malicious JavaScript code. This JavaScript code will be executed when a user opens the malicious URL.
An Improper Access Control vulnerability has been found in EmbedAI 2.1 and below. This vulnerability allows an authenticated attacker to obtain the backups of the database by requesting the "/embedai/app/uploads/database/<SQL_FILE>" endpoint.
an Improper Access Control vulnerability has been found in EmbedAI 2.1 and below. This vulnerability allows an authenticated attacker change his subscription plan without paying by making a POST request changing the parameters of the "/demos/embedai/pmt_cash_on_delivery/pay" endpoint.
An Improper Access Control vulnerability has been found in EmbedAI 2.1 and below. This vulnerability allows an authenticated attacker to leverage the endpoint "/embedai/visits/show/<VISIT_ID>" to obtain information about the visits made by other users. The information provided by this endpoint includes IP address, userAgent and location of the user that visited the web page.
An Improper Access Control vulnerability has been found in EmbedAI 2.1 and below. This vulnerability allows an authenticated attacker to obtain files stored by others users by changing the "FILE_ID" of the endpoint "/embedai/files/show/<FILE_ID>".
An Improper Access Control vulnerability has been found in EmbedAI
2.1 and below. This vulnerability allows an authenticated attacker to write messages into other users chat by changing the parameter "chat_id" of the POST request "/embedai/chats/send_message".
An Improper Access Control vulnerability has been found in EmbedAI
2.1 and below. This vulnerability allows an authenticated attacker to obtain chat messages belonging to other users by changing the “CHAT_ID” of the endpoint "/embedai/chats/load_messages?chat_id=<CHAT_ID>".
An Improper Access Control vulnerability has been found in EmbedAI 2.1 and below. This vulnerability allows an authenticated attacker to show subscription's information of others users by changing the "SUSCBRIPTION_ID" param of the endpoint "/demos/embedai/subscriptions/show/<SUSCBRIPTION_ID>".
A path traversal issue in ZipUtils.unzip and TarUtils.untar in Deep Java Library (DJL) on all platforms allows a bad actor to write files to arbitrary locations.
A vulnerability was found in MicroWorld eScan Antivirus 7.0.32 on Linux. It has been rated as critical. This issue affects some unknown processing of the file rtscanner of the component Quarantine Handler. The manipulation leads to os command injection. The attack may be initiated remotely. The complexity of an attack is rather high. The exploitation is known to be difficult. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability was found in MicroWorld eScan Antivirus 7.0.32 on Linux. It has been declared as problematic. This vulnerability affects unknown code of the file /var/Microworld/ of the component Quarantine Handler. The manipulation leads to incorrect default permissions. The attack needs to be approached locally. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
An unprivileged context can trigger a data
memory-dependent prefetch engine to fetch the contents of a privileged location
and consume those contents as an address that is also dereferenced.
A vulnerability, which was classified as critical, has been found in Pimcore customer-data-framework up to 4.2.0. Affected by this issue is some unknown functionality of the file /admin/customermanagementframework/customers/list. The manipulation of the argument filterDefinition/filter leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. Upgrading to version 4.2.1 is able to address this issue. It is recommended to upgrade the affected component.
A vulnerability classified as problematic was found in Pimcore 11.4.2. Affected by this vulnerability is an unknown functionality of the component Search Document. The manipulation leads to basic cross site scripting. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
A vulnerability has been identified in Node.js, specifically affecting the handling of drive names in the Windows environment. Certain Node.js functions do not treat drive names as special on Windows. As a result, although Node.js assumes a relative path, it actually refers to the root directory.
On Windows, a path that does not start with the file separator is treated as relative to the current directory.
This vulnerability affects Windows users of `path.join` API.
NVIDIA Container Toolkit contains an improper isolation vulnerability where a specially crafted container image could lead to untrusted code running in the host’s network namespace. This vulnerability is present only when the NVIDIA Container Toolkit is configured in a nondefault way. A successful exploit of this vulnerability may lead to denial of service and escalation of privileges.
NVIDIA Container Toolkit contains an improper isolation vulnerability where a specially crafted container image could lead to untrusted code obtaining read and write access to host devices. This vulnerability is present only when the NVIDIA Container Toolkit is configured in a nondefault way. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA Container Toolkit contains an improper isolation vulnerability where a specially crafted container image could lead to modification of a host binary. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
A null pointer dereference was addressed with improved input validation. This issue is fixed in macOS Sequoia 15.3, iOS 18.3 and iPadOS 18.3. A remote attacker may be able to cause a denial-of-service.
A permissions issue was addressed with improved validation. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. A local attacker may be able to elevate their privileges.
The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. An app may be able to bypass Privacy preferences.
A logging issue was addressed with improved data redaction. This issue is fixed in macOS Sequoia 15.3, Safari 18.3. A malicious app may be able to bypass browser extension authentication.