In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Avoid NULL dereference in msm_disp_state_print_regs()
If the allocation in msm_disp_state_dump_regs() failed then
`block->state` can be NULL. The msm_disp_state_print_regs() function
_does_ have code to try to handle it with:
if (*reg)
dump_addr = *reg;
...but since "dump_addr" is initialized to NULL the above is actually
a noop. The code then goes on to dereference `dump_addr`.
Make the function print "Registers not stored" when it sees a NULL to
solve this. Since we're touching the code, fix
msm_disp_state_print_regs() not to pointlessly take a double-pointer
and properly mark the pointer as `const`.
Patchwork: https://patchwork.freedesktop.org/patch/619657/
In the Linux kernel, the following vulnerability has been resolved:
tcp/dccp: Don't use timer_pending() in reqsk_queue_unlink().
Martin KaFai Lau reported use-after-free [0] in reqsk_timer_handler().
"""
We are seeing a use-after-free from a bpf prog attached to
trace_tcp_retransmit_synack. The program passes the req->sk to the
bpf_sk_storage_get_tracing kernel helper which does check for null
before using it.
"""
The commit 83fccfc3940c ("inet: fix potential deadlock in
reqsk_queue_unlink()") added timer_pending() in reqsk_queue_unlink() not
to call del_timer_sync() from reqsk_timer_handler(), but it introduced a
small race window.
Before the timer is called, expire_timers() calls detach_timer(timer, true)
to clear timer->entry.pprev and marks it as not pending.
If reqsk_queue_unlink() checks timer_pending() just after expire_timers()
calls detach_timer(), TCP will miss del_timer_sync(); the reqsk timer will
continue running and send multiple SYN+ACKs until it expires.
The reported UAF could happen if req->sk is close()d earlier than the timer
expiration, which is 63s by default.
The scenario would be
1. inet_csk_complete_hashdance() calls inet_csk_reqsk_queue_drop(),
but del_timer_sync() is missed
2. reqsk timer is executed and scheduled again
3. req->sk is accept()ed and reqsk_put() decrements rsk_refcnt, but
reqsk timer still has another one, and inet_csk_accept() does not
clear req->sk for non-TFO sockets
4. sk is close()d
5. reqsk timer is executed again, and BPF touches req->sk
Let's not use timer_pending() by passing the caller context to
__inet_csk_reqsk_queue_drop().
Note that reqsk timer is pinned, so the issue does not happen in most
use cases. [1]
[0]
BUG: KFENCE: use-after-free read in bpf_sk_storage_get_tracing+0x2e/0x1b0
Use-after-free read at 0x00000000a891fb3a (in kfence-#1):
bpf_sk_storage_get_tracing+0x2e/0x1b0
bpf_prog_5ea3e95db6da0438_tcp_retransmit_synack+0x1d20/0x1dda
bpf_trace_run2+0x4c/0xc0
tcp_rtx_synack+0xf9/0x100
reqsk_timer_handler+0xda/0x3d0
run_timer_softirq+0x292/0x8a0
irq_exit_rcu+0xf5/0x320
sysvec_apic_timer_interrupt+0x6d/0x80
asm_sysvec_apic_timer_interrupt+0x16/0x20
intel_idle_irq+0x5a/0xa0
cpuidle_enter_state+0x94/0x273
cpu_startup_entry+0x15e/0x260
start_secondary+0x8a/0x90
secondary_startup_64_no_verify+0xfa/0xfb
kfence-#1: 0x00000000a72cc7b6-0x00000000d97616d9, size=2376, cache=TCPv6
allocated by task 0 on cpu 9 at 260507.901592s:
sk_prot_alloc+0x35/0x140
sk_clone_lock+0x1f/0x3f0
inet_csk_clone_lock+0x15/0x160
tcp_create_openreq_child+0x1f/0x410
tcp_v6_syn_recv_sock+0x1da/0x700
tcp_check_req+0x1fb/0x510
tcp_v6_rcv+0x98b/0x1420
ipv6_list_rcv+0x2258/0x26e0
napi_complete_done+0x5b1/0x2990
mlx5e_napi_poll+0x2ae/0x8d0
net_rx_action+0x13e/0x590
irq_exit_rcu+0xf5/0x320
common_interrupt+0x80/0x90
asm_common_interrupt+0x22/0x40
cpuidle_enter_state+0xfb/0x273
cpu_startup_entry+0x15e/0x260
start_secondary+0x8a/0x90
secondary_startup_64_no_verify+0xfa/0xfb
freed by task 0 on cpu 9 at 260507.927527s:
rcu_core_si+0x4ff/0xf10
irq_exit_rcu+0xf5/0x320
sysvec_apic_timer_interrupt+0x6d/0x80
asm_sysvec_apic_timer_interrupt+0x16/0x20
cpuidle_enter_state+0xfb/0x273
cpu_startup_entry+0x15e/0x260
start_secondary+0x8a/0x90
secondary_startup_64_no_verify+0xfa/0xfb
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: core: Fix null-ptr-deref in target_alloc_device()
There is a null-ptr-deref issue reported by KASAN:
BUG: KASAN: null-ptr-deref in target_alloc_device+0xbc4/0xbe0 [target_core_mod]
...
kasan_report+0xb9/0xf0
target_alloc_device+0xbc4/0xbe0 [target_core_mod]
core_dev_setup_virtual_lun0+0xef/0x1f0 [target_core_mod]
target_core_init_configfs+0x205/0x420 [target_core_mod]
do_one_initcall+0xdd/0x4e0
...
entry_SYSCALL_64_after_hwframe+0x76/0x7e
In target_alloc_device(), if allocing memory for dev queues fails, then
dev will be freed by dev->transport->free_device(), but dev->transport
is not initialized at that time, which will lead to a null pointer
reference problem.
Fixing this bug by freeing dev with hba->backend->ops->free_device().
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix OOBs when building SMB2_IOCTL request
When using encryption, either enforced by the server or when using
'seal' mount option, the client will squash all compound request buffers
down for encryption into a single iov in smb2_set_next_command().
SMB2_ioctl_init() allocates a small buffer (448 bytes) to hold the
SMB2_IOCTL request in the first iov, and if the user passes an input
buffer that is greater than 328 bytes, smb2_set_next_command() will
end up writing off the end of @rqst->iov[0].iov_base as shown below:
mount.cifs //srv/share /mnt -o ...,seal
ln -s $(perl -e "print('a')for 1..1024") /mnt/link
BUG: KASAN: slab-out-of-bounds in
smb2_set_next_command.cold+0x1d6/0x24c [cifs]
Write of size 4116 at addr ffff8881148fcab8 by task ln/859
CPU: 1 UID: 0 PID: 859 Comm: ln Not tainted 6.12.0-rc3 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
1.16.3-2.fc40 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
? smb2_set_next_command.cold+0x1d6/0x24c [cifs]
print_report+0x156/0x4d9
? smb2_set_next_command.cold+0x1d6/0x24c [cifs]
? __virt_addr_valid+0x145/0x310
? __phys_addr+0x46/0x90
? smb2_set_next_command.cold+0x1d6/0x24c [cifs]
kasan_report+0xda/0x110
? smb2_set_next_command.cold+0x1d6/0x24c [cifs]
kasan_check_range+0x10f/0x1f0
__asan_memcpy+0x3c/0x60
smb2_set_next_command.cold+0x1d6/0x24c [cifs]
smb2_compound_op+0x238c/0x3840 [cifs]
? kasan_save_track+0x14/0x30
? kasan_save_free_info+0x3b/0x70
? vfs_symlink+0x1a1/0x2c0
? do_symlinkat+0x108/0x1c0
? __pfx_smb2_compound_op+0x10/0x10 [cifs]
? kmem_cache_free+0x118/0x3e0
? cifs_get_writable_path+0xeb/0x1a0 [cifs]
smb2_get_reparse_inode+0x423/0x540 [cifs]
? __pfx_smb2_get_reparse_inode+0x10/0x10 [cifs]
? rcu_is_watching+0x20/0x50
? __kmalloc_noprof+0x37c/0x480
? smb2_create_reparse_symlink+0x257/0x490 [cifs]
? smb2_create_reparse_symlink+0x38f/0x490 [cifs]
smb2_create_reparse_symlink+0x38f/0x490 [cifs]
? __pfx_smb2_create_reparse_symlink+0x10/0x10 [cifs]
? find_held_lock+0x8a/0xa0
? hlock_class+0x32/0xb0
? __build_path_from_dentry_optional_prefix+0x19d/0x2e0 [cifs]
cifs_symlink+0x24f/0x960 [cifs]
? __pfx_make_vfsuid+0x10/0x10
? __pfx_cifs_symlink+0x10/0x10 [cifs]
? make_vfsgid+0x6b/0xc0
? generic_permission+0x96/0x2d0
vfs_symlink+0x1a1/0x2c0
do_symlinkat+0x108/0x1c0
? __pfx_do_symlinkat+0x10/0x10
? strncpy_from_user+0xaa/0x160
__x64_sys_symlinkat+0xb9/0xf0
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f08d75c13bb
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: bnep: fix wild-memory-access in proto_unregister
There's issue as follows:
KASAN: maybe wild-memory-access in range [0xdead...108-0xdead...10f]
CPU: 3 UID: 0 PID: 2805 Comm: rmmod Tainted: G W
RIP: 0010:proto_unregister+0xee/0x400
Call Trace:
<TASK>
__do_sys_delete_module+0x318/0x580
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
As bnep_init() ignore bnep_sock_init()'s return value, and bnep_sock_init()
will cleanup all resource. Then when remove bnep module will call
bnep_sock_cleanup() to cleanup sock's resource.
To solve above issue just return bnep_sock_init()'s return value in
bnep_exit().
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix command bitmask initialization
Command bitmask have a dedicated bit for MANAGE_PAGES command, this bit
isn't Initialize during command bitmask Initialization, only during
MANAGE_PAGES.
In addition, mlx5_cmd_trigger_completions() is trying to trigger
completion for MANAGE_PAGES command as well.
Hence, in case health error occurred before any MANAGE_PAGES command
have been invoke (for example, during mlx5_enable_hca()),
mlx5_cmd_trigger_completions() will try to trigger completion for
MANAGE_PAGES command, which will result in null-ptr-deref error.[1]
Fix it by Initialize command bitmask correctly.
While at it, re-write the code for better understanding.
[1]
BUG: KASAN: null-ptr-deref in mlx5_cmd_trigger_completions+0x1db/0x600 [mlx5_core]
Write of size 4 at addr 0000000000000214 by task kworker/u96:2/12078
CPU: 10 PID: 12078 Comm: kworker/u96:2 Not tainted 6.9.0-rc2_for_upstream_debug_2024_04_07_19_01 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Workqueue: mlx5_health0000:08:00.0 mlx5_fw_fatal_reporter_err_work [mlx5_core]
Call Trace:
<TASK>
dump_stack_lvl+0x7e/0xc0
kasan_report+0xb9/0xf0
kasan_check_range+0xec/0x190
mlx5_cmd_trigger_completions+0x1db/0x600 [mlx5_core]
mlx5_cmd_flush+0x94/0x240 [mlx5_core]
enter_error_state+0x6c/0xd0 [mlx5_core]
mlx5_fw_fatal_reporter_err_work+0xf3/0x480 [mlx5_core]
process_one_work+0x787/0x1490
? lockdep_hardirqs_on_prepare+0x400/0x400
? pwq_dec_nr_in_flight+0xda0/0xda0
? assign_work+0x168/0x240
worker_thread+0x586/0xd30
? rescuer_thread+0xae0/0xae0
kthread+0x2df/0x3b0
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x2d/0x70
? kthread_complete_and_exit+0x20/0x20
ret_from_fork_asm+0x11/0x20
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Don't call cleanup on profile rollback failure
When profile rollback fails in mlx5e_netdev_change_profile, the netdev
profile var is left set to NULL. Avoid a crash when unloading the driver
by not calling profile->cleanup in such a case.
This was encountered while testing, with the original trigger that
the wq rescuer thread creation got interrupted (presumably due to
Ctrl+C-ing modprobe), which gets converted to ENOMEM (-12) by
mlx5e_priv_init, the profile rollback also fails for the same reason
(signal still active) so the profile is left as NULL, leading to a crash
later in _mlx5e_remove.
[ 732.473932] mlx5_core 0000:08:00.1: E-Switch: Unload vfs: mode(OFFLOADS), nvfs(2), necvfs(0), active vports(2)
[ 734.525513] workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
[ 734.557372] mlx5_core 0000:08:00.1: mlx5e_netdev_init_profile:6235:(pid 6086): mlx5e_priv_init failed, err=-12
[ 734.559187] mlx5_core 0000:08:00.1 eth3: mlx5e_netdev_change_profile: new profile init failed, -12
[ 734.560153] workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
[ 734.589378] mlx5_core 0000:08:00.1: mlx5e_netdev_init_profile:6235:(pid 6086): mlx5e_priv_init failed, err=-12
[ 734.591136] mlx5_core 0000:08:00.1 eth3: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12
[ 745.537492] BUG: kernel NULL pointer dereference, address: 0000000000000008
[ 745.538222] #PF: supervisor read access in kernel mode
<snipped>
[ 745.551290] Call Trace:
[ 745.551590] <TASK>
[ 745.551866] ? __die+0x20/0x60
[ 745.552218] ? page_fault_oops+0x150/0x400
[ 745.555307] ? exc_page_fault+0x79/0x240
[ 745.555729] ? asm_exc_page_fault+0x22/0x30
[ 745.556166] ? mlx5e_remove+0x6b/0xb0 [mlx5_core]
[ 745.556698] auxiliary_bus_remove+0x18/0x30
[ 745.557134] device_release_driver_internal+0x1df/0x240
[ 745.557654] bus_remove_device+0xd7/0x140
[ 745.558075] device_del+0x15b/0x3c0
[ 745.558456] mlx5_rescan_drivers_locked.part.0+0xb1/0x2f0 [mlx5_core]
[ 745.559112] mlx5_unregister_device+0x34/0x50 [mlx5_core]
[ 745.559686] mlx5_uninit_one+0x46/0xf0 [mlx5_core]
[ 745.560203] remove_one+0x4e/0xd0 [mlx5_core]
[ 745.560694] pci_device_remove+0x39/0xa0
[ 745.561112] device_release_driver_internal+0x1df/0x240
[ 745.561631] driver_detach+0x47/0x90
[ 745.562022] bus_remove_driver+0x84/0x100
[ 745.562444] pci_unregister_driver+0x3b/0x90
[ 745.562890] mlx5_cleanup+0xc/0x1b [mlx5_core]
[ 745.563415] __x64_sys_delete_module+0x14d/0x2f0
[ 745.563886] ? kmem_cache_free+0x1b0/0x460
[ 745.564313] ? lockdep_hardirqs_on_prepare+0xe2/0x190
[ 745.564825] do_syscall_64+0x6d/0x140
[ 745.565223] entry_SYSCALL_64_after_hwframe+0x4b/0x53
[ 745.565725] RIP: 0033:0x7f1579b1288b
In the Linux kernel, the following vulnerability has been resolved:
octeon_ep: Add SKB allocation failures handling in __octep_oq_process_rx()
build_skb() returns NULL in case of a memory allocation failure so handle
it inside __octep_oq_process_rx() to avoid NULL pointer dereference.
__octep_oq_process_rx() is called during NAPI polling by the driver. If
skb allocation fails, keep on pulling packets out of the Rx DMA queue: we
shouldn't break the polling immediately and thus falsely indicate to the
octep_napi_poll() that the Rx pressure is going down. As there is no
associated skb in this case, don't process the packets and don't push them
up the network stack - they are skipped.
Helper function is implemented to unmmap/flush all the fragment buffers
used by the dropped packet. 'alloc_failures' counter is incremented to
mark the skb allocation error in driver statistics.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: fix unbalanced rpm put() with fence_fini()
Currently we can call fence_fini() twice if something goes wrong when
sending the GuC CT for the tlb request, since we signal the fence and
return an error, leading to the caller also calling fini() on the error
path in the case of stack version of the flow, which leads to an extra
rpm put() which might later cause device to enter suspend when it
shouldn't. It looks like we can just drop the fini() call since the
fence signaller side will already call this for us.
There are known mysterious splats with device going to sleep even with
an rpm ref, and this could be one candidate.
v2 (Matt B):
- Prefer warning if we detect double fini()
(cherry picked from commit cfcbc0520d5055825f0647ab922b655688605183)
In the Linux kernel, the following vulnerability has been resolved:
udf: fix uninit-value use in udf_get_fileshortad
Check for overflow when computing alen in udf_current_aext to mitigate
later uninit-value use in udf_get_fileshortad KMSAN bug[1].
After applying the patch reproducer did not trigger any issue[2].
[1] https://syzkaller.appspot.com/bug?extid=8901c4560b7ab5c2f9df
[2] https://syzkaller.appspot.com/x/log.txt?x=10242227980000
In the Linux kernel, the following vulnerability has been resolved:
xfrm: validate new SA's prefixlen using SA family when sel.family is unset
This expands the validation introduced in commit 07bf7908950a ("xfrm:
Validate address prefix lengths in the xfrm selector.")
syzbot created an SA with
usersa.sel.family = AF_UNSPEC
usersa.sel.prefixlen_s = 128
usersa.family = AF_INET
Because of the AF_UNSPEC selector, verify_newsa_info doesn't put
limits on prefixlen_{s,d}. But then copy_from_user_state sets
x->sel.family to usersa.family (AF_INET). Do the same conversion in
verify_newsa_info before validating prefixlen_{s,d}, since that's how
prefixlen is going to be used later on.
In the Linux kernel, the following vulnerability has been resolved:
ACPI: PRM: Find EFI_MEMORY_RUNTIME block for PRM handler and context
PRMT needs to find the correct type of block to translate the PA-VA
mapping for EFI runtime services.
The issue arises because the PRMT is finding a block of type
EFI_CONVENTIONAL_MEMORY, which is not appropriate for runtime services
as described in Section 2.2.2 (Runtime Services) of the UEFI
Specification [1]. Since the PRM handler is a type of runtime service,
this causes an exception when the PRM handler is called.
[Firmware Bug]: Unable to handle paging request in EFI runtime service
WARNING: CPU: 22 PID: 4330 at drivers/firmware/efi/runtime-wrappers.c:341
__efi_queue_work+0x11c/0x170
Call trace:
Let PRMT find a block with EFI_MEMORY_RUNTIME for PRM handler and PRM
context.
If no suitable block is found, a warning message will be printed, but
the procedure continues to manage the next PRM handler.
However, if the PRM handler is actually called without proper allocation,
it would result in a failure during error handling.
By using the correct memory types for runtime services, ensure that the
PRM handler and the context are properly mapped in the virtual address
space during runtime, preventing the paging request error.
The issue is really that only memory that has been remapped for runtime
by the firmware can be used by the PRM handler, and so the region needs
to have the EFI_MEMORY_RUNTIME attribute.
[ rjw: Subject and changelog edits ]
In the Linux kernel, the following vulnerability has been resolved:
sched/core: Disable page allocation in task_tick_mm_cid()
With KASAN and PREEMPT_RT enabled, calling task_work_add() in
task_tick_mm_cid() may cause the following splat.
[ 63.696416] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
[ 63.696416] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 610, name: modprobe
[ 63.696416] preempt_count: 10001, expected: 0
[ 63.696416] RCU nest depth: 1, expected: 1
This problem is caused by the following call trace.
sched_tick() [ acquire rq->__lock ]
-> task_tick_mm_cid()
-> task_work_add()
-> __kasan_record_aux_stack()
-> kasan_save_stack()
-> stack_depot_save_flags()
-> alloc_pages_mpol_noprof()
-> __alloc_pages_noprof()
-> get_page_from_freelist()
-> rmqueue()
-> rmqueue_pcplist()
-> __rmqueue_pcplist()
-> rmqueue_bulk()
-> rt_spin_lock()
The rq lock is a raw_spinlock_t. We can't sleep while holding
it. IOW, we can't call alloc_pages() in stack_depot_save_flags().
The task_tick_mm_cid() function with its task_work_add() call was
introduced by commit 223baf9d17f2 ("sched: Fix performance regression
introduced by mm_cid") in v6.4 kernel.
Fortunately, there is a kasan_record_aux_stack_noalloc() variant that
calls stack_depot_save_flags() while not allowing it to allocate
new pages. To allow task_tick_mm_cid() to use task_work without
page allocation, a new TWAF_NO_ALLOC flag is added to enable calling
kasan_record_aux_stack_noalloc() instead of kasan_record_aux_stack()
if set. The task_tick_mm_cid() function is modified to add this new flag.
The possible downside is the missing stack trace in a KASAN report due
to new page allocation required when task_work_add_noallloc() is called
which should be rare.
In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Fix shift-out-of-bounds bug
Fix a shift-out-of-bounds bug reported by UBSAN when running
VM with MTE enabled host kernel.
UBSAN: shift-out-of-bounds in arch/arm64/kvm/sys_regs.c:1988:14
shift exponent 33 is too large for 32-bit type 'int'
CPU: 26 UID: 0 PID: 7629 Comm: qemu-kvm Not tainted 6.12.0-rc2 #34
Hardware name: IEI NF5280R7/Mitchell MB, BIOS 00.00. 2024-10-12 09:28:54 10/14/2024
Call trace:
dump_backtrace+0xa0/0x128
show_stack+0x20/0x38
dump_stack_lvl+0x74/0x90
dump_stack+0x18/0x28
__ubsan_handle_shift_out_of_bounds+0xf8/0x1e0
reset_clidr+0x10c/0x1c8
kvm_reset_sys_regs+0x50/0x1c8
kvm_reset_vcpu+0xec/0x2b0
__kvm_vcpu_set_target+0x84/0x158
kvm_vcpu_set_target+0x138/0x168
kvm_arch_vcpu_ioctl_vcpu_init+0x40/0x2b0
kvm_arch_vcpu_ioctl+0x28c/0x4b8
kvm_vcpu_ioctl+0x4bc/0x7a8
__arm64_sys_ioctl+0xb4/0x100
invoke_syscall+0x70/0x100
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x3c/0x158
el0t_64_sync_handler+0x120/0x130
el0t_64_sync+0x194/0x198
Zohocorp ManageEngine EndPoint Central versions 11.3.2416.21 and below, 11.3.2428.9 and below are vulnerable to Arbitrary File Deletion in the agent installed machines.
Allocation of Resources Without Limits or Throttling vulnerability in Apache Tomcat.
This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.0-M20, from 10.1.0-M1 through 10.1.24, from 9.0.13 through 9.0.89.
The following versions were EOL at the time the CVE was created but are
known to be affected: 8.5.35 through 8.5.100 and 7.0.92 through 7.0.109. Other EOL versions may also be affected.
Users are recommended to upgrade to version 11.0.0-M21, 10.1.25, or 9.0.90, which fixes the issue.
Apache Tomcat, under certain configurations on any platform, allows an attacker to cause an OutOfMemoryError by abusing the TLS handshake process.
symfony/http-foundation is a module for the Symphony PHP framework which defines an object-oriented layer for the HTTP specification. The `Request` class, does not parse URI with special characters the same way browsers do. As a result, an attacker can trick a validator relying on the `Request` class to redirect users to another domain. The `Request::create` methods now assert the URI does not contain invalid characters as defined by https://url.spec.whatwg.org/. This issue has been patched in versions 5.4.46, 6.4.14, and 7.1.7. Users are advised to upgrade. There are no known workarounds for this vulnerability.
symfony/validator is a module for the Symphony PHP framework which provides tools to validate values. It is possible to trick a `Validator` configured with a regular expression using the `$` metacharacters, with an input ending with `\n`. Symfony as of versions 5.4.43, 6.4.11, and 7.1.4 now uses the `D` regex modifier to match the entire input. Users are advised to upgrade. There are no known workarounds for this vulnerability.
CodeChecker is an analyzer tooling, defect database and viewer extension for the Clang Static Analyzer and Clang Tidy.
Authentication method confusion allows logging in as the built-in root user from an external service. The built-in root user up until 6.24.1 is generated in a weak manner, cannot be disabled, and has universal access.This vulnerability allows an attacker who can create an account on an enabled external authentication service, to log in as the root user, and access and control everything that can be controlled via the web interface. The attacker needs to acquire the username of the root user to be successful.
This issue affects CodeChecker: through 6.24.1.
CodeChecker is an analyzer tooling, defect database and viewer extension for the Clang Static Analyzer and Clang Tidy.
Authentication bypass occurs when the API URL ends with Authentication. This bypass allows superuser access to all API endpoints other than Authentication. These endpoints include the ability to add, edit, and remove products, among others. All endpoints, apart from the /Authentication is affected by the vulnerability.
This issue affects CodeChecker: through 6.24.1.
A flaw was found in Ansible. The ansible-core `user` module can allow an unprivileged user to silently create or replace the contents of any file on any system path and take ownership of it when a privileged user executes the `user` module against the unprivileged user's home directory. If the unprivileged user has traversal permissions on the directory containing the exploited target file, they retain full control over the contents of the file as its owner.
When curl is asked to use HSTS, the expiry time for a subdomain might
overwrite a parent domain's cache entry, making it end sooner or later than
otherwise intended.
This affects curl using applications that enable HSTS and use URLs with the
insecure `HTTP://` scheme and perform transfers with hosts like
`x.example.com` as well as `example.com` where the first host is a subdomain
of the second host.
(The HSTS cache either needs to have been populated manually or there needs to
have been previous HTTPS accesses done as the cache needs to have entries for
the domains involved to trigger this problem.)
When `x.example.com` responds with `Strict-Transport-Security:` headers, this
bug can make the subdomain's expiry timeout *bleed over* and get set for the
parent domain `example.com` in curl's HSTS cache.
The result of a triggered bug is that HTTP accesses to `example.com` get
converted to HTTPS for a different period of time than what was asked for by
the origin server. If `example.com` for example stops supporting HTTPS at its
expiry time, curl might then fail to access `http://example.com` until the
(wrongly set) timeout expires. This bug can also expire the parent's entry
*earlier*, thus making curl inadvertently switch back to insecure HTTP earlier
than otherwise intended.
The AuthKit library for Next.js provides convenient helpers for authentication and session management using WorkOS & AuthKit with Next.js. In affected versions refresh tokens are logged to the console when the disabled by default `debug` flag, is enabled. This issue has been patched in version 0.13.2 and all users are advised to upgrade. There are no known workarounds for this vulnerability.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Use raw_spinlock_t in ringbuf
The function __bpf_ringbuf_reserve is invoked from a tracepoint, which
disables preemption. Using spinlock_t in this context can lead to a
"sleep in atomic" warning in the RT variant. This issue is illustrated
in the example below:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 556208, name: test_progs
preempt_count: 1, expected: 0
RCU nest depth: 1, expected: 1
INFO: lockdep is turned off.
Preemption disabled at:
[<ffffd33a5c88ea44>] migrate_enable+0xc0/0x39c
CPU: 7 PID: 556208 Comm: test_progs Tainted: G
Hardware name: Qualcomm SA8775P Ride (DT)
Call trace:
dump_backtrace+0xac/0x130
show_stack+0x1c/0x30
dump_stack_lvl+0xac/0xe8
dump_stack+0x18/0x30
__might_resched+0x3bc/0x4fc
rt_spin_lock+0x8c/0x1a4
__bpf_ringbuf_reserve+0xc4/0x254
bpf_ringbuf_reserve_dynptr+0x5c/0xdc
bpf_prog_ac3d15160d62622a_test_read_write+0x104/0x238
trace_call_bpf+0x238/0x774
perf_call_bpf_enter.isra.0+0x104/0x194
perf_syscall_enter+0x2f8/0x510
trace_sys_enter+0x39c/0x564
syscall_trace_enter+0x220/0x3c0
do_el0_svc+0x138/0x1dc
el0_svc+0x54/0x130
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x17c/0x180
Switch the spinlock to raw_spinlock_t to avoid this error.
In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix race condition between reset and nvme_dev_disable()
nvme_dev_disable() modifies the dev->online_queues field, therefore
nvme_pci_update_nr_queues() should avoid racing against it, otherwise
we could end up passing invalid values to blk_mq_update_nr_hw_queues().
WARNING: CPU: 39 PID: 61303 at drivers/pci/msi/api.c:347
pci_irq_get_affinity+0x187/0x210
Workqueue: nvme-reset-wq nvme_reset_work [nvme]
RIP: 0010:pci_irq_get_affinity+0x187/0x210
Call Trace:
<TASK>
? blk_mq_pci_map_queues+0x87/0x3c0
? pci_irq_get_affinity+0x187/0x210
blk_mq_pci_map_queues+0x87/0x3c0
nvme_pci_map_queues+0x189/0x460 [nvme]
blk_mq_update_nr_hw_queues+0x2a/0x40
nvme_reset_work+0x1be/0x2a0 [nvme]
Fix the bug by locking the shutdown_lock mutex before using
dev->online_queues. Give up if nvme_dev_disable() is running or if
it has been executed already.
In the Linux kernel, the following vulnerability has been resolved:
drm/vboxvideo: Replace fake VLA at end of vbva_mouse_pointer_shape with real VLA
Replace the fake VLA at end of the vbva_mouse_pointer_shape shape with
a real VLA to fix a "memcpy: detected field-spanning write error" warning:
[ 13.319813] memcpy: detected field-spanning write (size 16896) of single field "p->data" at drivers/gpu/drm/vboxvideo/hgsmi_base.c:154 (size 4)
[ 13.319841] WARNING: CPU: 0 PID: 1105 at drivers/gpu/drm/vboxvideo/hgsmi_base.c:154 hgsmi_update_pointer_shape+0x192/0x1c0 [vboxvideo]
[ 13.320038] Call Trace:
[ 13.320173] hgsmi_update_pointer_shape [vboxvideo]
[ 13.320184] vbox_cursor_atomic_update [vboxvideo]
Note as mentioned in the added comment it seems the original length
calculation for the allocated and send hgsmi buffer is 4 bytes too large.
Changing this is not the goal of this patch, so this behavior is kept.
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Don't crash in stack_top() for tasks without vDSO
Not all tasks have a vDSO mapped, for example kthreads never do. If such
a task ever ends up calling stack_top(), it will derefence the NULL vdso
pointer and crash.
This can for example happen when using kunit:
[<9000000000203874>] stack_top+0x58/0xa8
[<90000000002956cc>] arch_pick_mmap_layout+0x164/0x220
[<90000000003c284c>] kunit_vm_mmap_init+0x108/0x12c
[<90000000003c1fbc>] __kunit_add_resource+0x38/0x8c
[<90000000003c2704>] kunit_vm_mmap+0x88/0xc8
[<9000000000410b14>] usercopy_test_init+0xbc/0x25c
[<90000000003c1db4>] kunit_try_run_case+0x5c/0x184
[<90000000003c3d54>] kunit_generic_run_threadfn_adapter+0x24/0x48
[<900000000022e4bc>] kthread+0xc8/0xd4
[<9000000000200ce8>] ret_from_kernel_thread+0xc/0xa4
In the Linux kernel, the following vulnerability has been resolved:
tracing/probes: Fix MAX_TRACE_ARGS limit handling
When creating a trace_probe we would set nr_args prior to truncating the
arguments to MAX_TRACE_ARGS. However, we would only initialize arguments
up to the limit.
This caused invalid memory access when attempting to set up probes with
more than 128 fetchargs.
BUG: kernel NULL pointer dereference, address: 0000000000000020
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 0 UID: 0 PID: 1769 Comm: cat Not tainted 6.11.0-rc7+ #8
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014
RIP: 0010:__set_print_fmt+0x134/0x330
Resolve the issue by applying the MAX_TRACE_ARGS limit earlier. Return
an error when there are too many arguments instead of silently
truncating.
In the Linux kernel, the following vulnerability has been resolved:
tracing: Consider the NULL character when validating the event length
strlen() returns a string length excluding the null byte. If the string
length equals to the maximum buffer length, the buffer will have no
space for the NULL terminating character.
This commit checks this condition and returns failure for it.
In the Linux kernel, the following vulnerability has been resolved:
net: pse-pd: Fix out of bound for loop
Adjust the loop limit to prevent out-of-bounds access when iterating over
PI structures. The loop should not reach the index pcdev->nr_lines since
we allocate exactly pcdev->nr_lines number of PI structures. This fix
ensures proper bounds are maintained during iterations.
In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix use-after-free in taprio_change()
In 'taprio_change()', 'admin' pointer may become dangling due to sched
switch / removal caused by 'advance_sched()', and critical section
protected by 'q->current_entry_lock' is too small to prevent from such
a scenario (which causes use-after-free detected by KASAN). Fix this
by prefer 'rcu_replace_pointer()' over 'rcu_assign_pointer()' to update
'admin' immediately before an attempt to schedule freeing.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix UAF on sco_sock_timeout
conn->sk maybe have been unlinked/freed while waiting for sco_conn_lock
so this checks if the conn->sk is still valid by checking if it part of
sco_sk_list.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: ISO: Fix UAF on iso_sock_timeout
conn->sk maybe have been unlinked/freed while waiting for iso_conn_lock
so this checks if the conn->sk is still valid by checking if it part of
iso_sk_list.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Add the missing BPF_LINK_TYPE invocation for sockmap
There is an out-of-bounds read in bpf_link_show_fdinfo() for the sockmap
link fd. Fix it by adding the missing BPF_LINK_TYPE invocation for
sockmap link
Also add comments for bpf_link_type to prevent missing updates in the
future.
In the Linux kernel, the following vulnerability has been resolved:
PCI: Hold rescan lock while adding devices during host probe
Since adding the PCI power control code, we may end up with a race between
the pwrctl platform device rescanning the bus and host controller probe
functions. The latter need to take the rescan lock when adding devices or
we may end up in an undefined state having two incompletely added devices
and hit the following crash when trying to remove the device over sysfs:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
Call trace:
__pi_strlen+0x14/0x150
kernfs_find_ns+0x80/0x13c
kernfs_remove_by_name_ns+0x54/0xf0
sysfs_remove_bin_file+0x24/0x34
pci_remove_resource_files+0x3c/0x84
pci_remove_sysfs_dev_files+0x28/0x38
pci_stop_bus_device+0x8c/0xd8
pci_stop_bus_device+0x40/0xd8
pci_stop_and_remove_bus_device_locked+0x28/0x48
remove_store+0x70/0xb0
dev_attr_store+0x20/0x38
sysfs_kf_write+0x58/0x78
kernfs_fop_write_iter+0xe8/0x184
vfs_write+0x2dc/0x308
ksys_write+0x7c/0xec
In the Linux kernel, the following vulnerability has been resolved:
nfsd: cancel nfsd_shrinker_work using sync mode in nfs4_state_shutdown_net
In the normal case, when we excute `echo 0 > /proc/fs/nfsd/threads`, the
function `nfs4_state_destroy_net` in `nfs4_state_shutdown_net` will
release all resources related to the hashed `nfs4_client`. If the
`nfsd_client_shrinker` is running concurrently, the `expire_client`
function will first unhash this client and then destroy it. This can
lead to the following warning. Additionally, numerous use-after-free
errors may occur as well.
nfsd_client_shrinker echo 0 > /proc/fs/nfsd/threads
expire_client nfsd_shutdown_net
unhash_client ...
nfs4_state_shutdown_net
/* won't wait shrinker exit */
/* cancel_work(&nn->nfsd_shrinker_work)
* nfsd_file for this /* won't destroy unhashed client1 */
* client1 still alive nfs4_state_destroy_net
*/
nfsd_file_cache_shutdown
/* trigger warning */
kmem_cache_destroy(nfsd_file_slab)
kmem_cache_destroy(nfsd_file_mark_slab)
/* release nfsd_file and mark */
__destroy_client
====================================================================
BUG nfsd_file (Not tainted): Objects remaining in nfsd_file on
__kmem_cache_shutdown()
--------------------------------------------------------------------
CPU: 4 UID: 0 PID: 764 Comm: sh Not tainted 6.12.0-rc3+ #1
dump_stack_lvl+0x53/0x70
slab_err+0xb0/0xf0
__kmem_cache_shutdown+0x15c/0x310
kmem_cache_destroy+0x66/0x160
nfsd_file_cache_shutdown+0xac/0x210 [nfsd]
nfsd_destroy_serv+0x251/0x2a0 [nfsd]
nfsd_svc+0x125/0x1e0 [nfsd]
write_threads+0x16a/0x2a0 [nfsd]
nfsctl_transaction_write+0x74/0xa0 [nfsd]
vfs_write+0x1a5/0x6d0
ksys_write+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
====================================================================
BUG nfsd_file_mark (Tainted: G B W ): Objects remaining
nfsd_file_mark on __kmem_cache_shutdown()
--------------------------------------------------------------------
dump_stack_lvl+0x53/0x70
slab_err+0xb0/0xf0
__kmem_cache_shutdown+0x15c/0x310
kmem_cache_destroy+0x66/0x160
nfsd_file_cache_shutdown+0xc8/0x210 [nfsd]
nfsd_destroy_serv+0x251/0x2a0 [nfsd]
nfsd_svc+0x125/0x1e0 [nfsd]
write_threads+0x16a/0x2a0 [nfsd]
nfsctl_transaction_write+0x74/0xa0 [nfsd]
vfs_write+0x1a5/0x6d0
ksys_write+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
To resolve this issue, cancel `nfsd_shrinker_work` using synchronous
mode in nfs4_state_shutdown_net.
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix warning when destroy 'cifs_io_request_pool'
There's a issue as follows:
WARNING: CPU: 1 PID: 27826 at mm/slub.c:4698 free_large_kmalloc+0xac/0xe0
RIP: 0010:free_large_kmalloc+0xac/0xe0
Call Trace:
<TASK>
? __warn+0xea/0x330
mempool_destroy+0x13f/0x1d0
init_cifs+0xa50/0xff0 [cifs]
do_one_initcall+0xdc/0x550
do_init_module+0x22d/0x6b0
load_module+0x4e96/0x5ff0
init_module_from_file+0xcd/0x130
idempotent_init_module+0x330/0x620
__x64_sys_finit_module+0xb3/0x110
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Obviously, 'cifs_io_request_pool' is not created by mempool_create().
So just use mempool_exit() to revert 'cifs_io_request_pool'.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: reject ro->rw reconfiguration if there are hard ro requirements
[BUG]
Syzbot reports the following crash:
BTRFS info (device loop0 state MCS): disabling free space tree
BTRFS info (device loop0 state MCS): clearing compat-ro feature flag for FREE_SPACE_TREE (0x1)
BTRFS info (device loop0 state MCS): clearing compat-ro feature flag for FREE_SPACE_TREE_VALID (0x2)
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:backup_super_roots fs/btrfs/disk-io.c:1691 [inline]
RIP: 0010:write_all_supers+0x97a/0x40f0 fs/btrfs/disk-io.c:4041
Call Trace:
<TASK>
btrfs_commit_transaction+0x1eae/0x3740 fs/btrfs/transaction.c:2530
btrfs_delete_free_space_tree+0x383/0x730 fs/btrfs/free-space-tree.c:1312
btrfs_start_pre_rw_mount+0xf28/0x1300 fs/btrfs/disk-io.c:3012
btrfs_remount_rw fs/btrfs/super.c:1309 [inline]
btrfs_reconfigure+0xae6/0x2d40 fs/btrfs/super.c:1534
btrfs_reconfigure_for_mount fs/btrfs/super.c:2020 [inline]
btrfs_get_tree_subvol fs/btrfs/super.c:2079 [inline]
btrfs_get_tree+0x918/0x1920 fs/btrfs/super.c:2115
vfs_get_tree+0x90/0x2b0 fs/super.c:1800
do_new_mount+0x2be/0xb40 fs/namespace.c:3472
do_mount fs/namespace.c:3812 [inline]
__do_sys_mount fs/namespace.c:4020 [inline]
__se_sys_mount+0x2d6/0x3c0 fs/namespace.c:3997
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[CAUSE]
To support mounting different subvolume with different RO/RW flags for
the new mount APIs, btrfs introduced two workaround to support this feature:
- Skip mount option/feature checks if we are mounting a different
subvolume
- Reconfigure the fs to RW if the initial mount is RO
Combining these two, we can have the following sequence:
- Mount the fs ro,rescue=all,clear_cache,space_cache=v1
rescue=all will mark the fs as hard read-only, so no v2 cache clearing
will happen.
- Mount a subvolume rw of the same fs.
We go into btrfs_get_tree_subvol(), but fc_mount() returns EBUSY
because our new fc is RW, different from the original fs.
Now we enter btrfs_reconfigure_for_mount(), which switches the RO flag
first so that we can grab the existing fs_info.
Then we reconfigure the fs to RW.
- During reconfiguration, option/features check is skipped
This means we will restart the v2 cache clearing, and convert back to
v1 cache.
This will trigger fs writes, and since the original fs has "rescue=all"
option, it skips the csum tree read.
And eventually causing NULL pointer dereference in super block
writeback.
[FIX]
For reconfiguration caused by different subvolume RO/RW flags, ensure we
always run btrfs_check_options() to ensure we have proper hard RO
requirements met.
In fact the function btrfs_check_options() doesn't really do many
complex checks, but hard RO requirement and some feature dependency
checks, thus there is no special reason not to do the check for mount
reconfiguration.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd: Guard against bad data for ATIF ACPI method
If a BIOS provides bad data in response to an ATIF method call
this causes a NULL pointer dereference in the caller.
```
? show_regs (arch/x86/kernel/dumpstack.c:478 (discriminator 1))
? __die (arch/x86/kernel/dumpstack.c:423 arch/x86/kernel/dumpstack.c:434)
? page_fault_oops (arch/x86/mm/fault.c:544 (discriminator 2) arch/x86/mm/fault.c:705 (discriminator 2))
? do_user_addr_fault (arch/x86/mm/fault.c:440 (discriminator 1) arch/x86/mm/fault.c:1232 (discriminator 1))
? acpi_ut_update_object_reference (drivers/acpi/acpica/utdelete.c:642)
? exc_page_fault (arch/x86/mm/fault.c:1542)
? asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:623)
? amdgpu_atif_query_backlight_caps.constprop.0 (drivers/gpu/drm/amd/amdgpu/amdgpu_acpi.c:387 (discriminator 2)) amdgpu
? amdgpu_atif_query_backlight_caps.constprop.0 (drivers/gpu/drm/amd/amdgpu/amdgpu_acpi.c:386 (discriminator 1)) amdgpu
```
It has been encountered on at least one system, so guard for it.
(cherry picked from commit c9b7c809b89f24e9372a4e7f02d64c950b07fdee)
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix kernel bug due to missing clearing of buffer delay flag
Syzbot reported that after nilfs2 reads a corrupted file system image
and degrades to read-only, the BUG_ON check for the buffer delay flag
in submit_bh_wbc() may fail, causing a kernel bug.
This is because the buffer delay flag is not cleared when clearing the
buffer state flags to discard a page/folio or a buffer head. So, fix
this.
This became necessary when the use of nilfs2's own page clear routine
was expanded. This state inconsistency does not occur if the buffer
is written normally by log writing.
In the Linux kernel, the following vulnerability has been resolved:
KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory
Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits
4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't
enforce 32-byte alignment of nCR3.
In the absolute worst case scenario, failure to ignore bits 4:0 can result
in an out-of-bounds read, e.g. if the target page is at the end of a
memslot, and the VMM isn't using guard pages.
Per the APM:
The CR3 register points to the base address of the page-directory-pointer
table. The page-directory-pointer table is aligned on a 32-byte boundary,
with the low 5 address bits 4:0 assumed to be 0.
And the SDM's much more explicit:
4:0 Ignored
Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow
that is broken.
In the Linux kernel, the following vulnerability has been resolved:
firewire: core: fix invalid port index for parent device
In a commit 24b7f8e5cd65 ("firewire: core: use helper functions for self
ID sequence"), the enumeration over self ID sequence was refactored with
some helper functions with KUnit tests. These helper functions are
guaranteed to work expectedly by the KUnit tests, however their application
includes a mistake to assign invalid value to the index of port connected
to parent device.
This bug affects the case that any extra node devices which has three or
more ports are connected to 1394 OHCI controller. In the case, the path
to update the tree cache could hits WARN_ON(), and gets general protection
fault due to the access to invalid address computed by the invalid value.
This commit fixes the bug to assign correct port index.
In the Linux kernel, the following vulnerability has been resolved:
x86/lam: Disable ADDRESS_MASKING in most cases
Linear Address Masking (LAM) has a weakness related to transient
execution as described in the SLAM paper[1]. Unless Linear Address
Space Separation (LASS) is enabled this weakness may be exploitable.
Until kernel adds support for LASS[2], only allow LAM for COMPILE_TEST,
or when speculation mitigations have been disabled at compile time,
otherwise keep LAM disabled.
There are no processors in market that support LAM yet, so currently
nobody is affected by this issue.
[1] SLAM: https://download.vusec.net/papers/slam_sp24.pdf
[2] LASS: https://lore.kernel.org/lkml/20230609183632.48706-1-alexander.shishkin@linux.intel.com/
[ dhansen: update SPECULATION_MITIGATIONS -> CPU_MITIGATIONS ]
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Enable IRQ if do_ale() triggered in irq-enabled context
Unaligned access exception can be triggered in irq-enabled context such
as user mode, in this case do_ale() may call get_user() which may cause
sleep. Then we will get:
BUG: sleeping function called from invalid context at arch/loongarch/kernel/access-helper.h:7
in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 129, name: modprobe
preempt_count: 0, expected: 0
RCU nest depth: 0, expected: 0
CPU: 0 UID: 0 PID: 129 Comm: modprobe Tainted: G W 6.12.0-rc1+ #1723
Tainted: [W]=WARN
Stack : 9000000105e0bd48 0000000000000000 9000000003803944 9000000105e08000
9000000105e0bc70 9000000105e0bc78 0000000000000000 0000000000000000
9000000105e0bc78 0000000000000001 9000000185e0ba07 9000000105e0b890
ffffffffffffffff 9000000105e0bc78 73924b81763be05b 9000000100194500
000000000000020c 000000000000000a 0000000000000000 0000000000000003
00000000000023f0 00000000000e1401 00000000072f8000 0000007ffbb0e260
0000000000000000 0000000000000000 9000000005437650 90000000055d5000
0000000000000000 0000000000000003 0000007ffbb0e1f0 0000000000000000
0000005567b00490 0000000000000000 9000000003803964 0000007ffbb0dfec
00000000000000b0 0000000000000007 0000000000000003 0000000000071c1d
...
Call Trace:
[<9000000003803964>] show_stack+0x64/0x1a0
[<9000000004c57464>] dump_stack_lvl+0x74/0xb0
[<9000000003861ab4>] __might_resched+0x154/0x1a0
[<900000000380c96c>] emulate_load_store_insn+0x6c/0xf60
[<9000000004c58118>] do_ale+0x78/0x180
[<9000000003801bc8>] handle_ale+0x128/0x1e0
So enable IRQ if unaligned access exception is triggered in irq-enabled
context to fix it.