CVE Database

Search and browse vulnerability records from NVD

Showing 50 of 28155 CVEs

CVE ID Severity Description EPSS Published
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: exfat: fix memory leak in exfat_load_bitmap() If the first directory entry in the root directory is not a bitmap directory entry, 'bh' will not be released and reassigned, which will cause a memory leak.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: cpufreq: Avoid a bad reference count on CPU node In the parse_perf_domain function, if the call to of_parse_phandle_with_args returns an error, then the reference to the CPU device node that was acquired at the start of the function would not be properly decremented. Address this by declaring the variable with the __free(device_node) cleanup attribute.

0.0% 2024-10-21
4.7 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: exec: don't WARN for racy path_noexec check Both i_mode and noexec checks wrapped in WARN_ON stem from an artifact of the previous implementation. They used to legitimately check for the condition, but that got moved up in two commits: 633fb6ac3980 ("exec: move S_ISREG() check earlier") 0fd338b2d2cd ("exec: move path_noexec() check earlier") Instead of being removed said checks are WARN_ON'ed instead, which has some debug value. However, the spurious path_noexec check is racy, resulting in unwarranted warnings should someone race with setting the noexec flag. One can note there is more to perm-checking whether execve is allowed and none of the conditions are guaranteed to still hold after they were tested for. Additionally this does not validate whether the code path did any perm checking to begin with -- it will pass if the inode happens to be regular. Keep the redundant path_noexec() check even though it's mindless nonsense checking for guarantee that isn't given so drop the WARN. Reword the commentary and do small tidy ups while here. [brauner: keep redundant path_noexec() check]

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: Fix memcpy() field-spanning write warning in mwifiex_cmd_802_11_scan_ext() Replace one-element array with a flexible-array member in `struct host_cmd_ds_802_11_scan_ext`. With this, fix the following warning: elo 16 17:51:58 surfacebook kernel: ------------[ cut here ]------------ elo 16 17:51:58 surfacebook kernel: memcpy: detected field-spanning write (size 243) of single field "ext_scan->tlv_buffer" at drivers/net/wireless/marvell/mwifiex/scan.c:2239 (size 1) elo 16 17:51:58 surfacebook kernel: WARNING: CPU: 0 PID: 498 at drivers/net/wireless/marvell/mwifiex/scan.c:2239 mwifiex_cmd_802_11_scan_ext+0x83/0x90 [mwifiex]

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: ALSA: asihpi: Fix potential OOB array access ASIHPI driver stores some values in the static array upon a response from the driver, and its index depends on the firmware. We shouldn't trust it blindly. This patch adds a sanity check of the array index to fit in the array size.

0.0% 2024-10-21
4.7 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ext4: fix i_data_sem unlock order in ext4_ind_migrate() Fuzzing reports a possible deadlock in jbd2_log_wait_commit. This issue is triggered when an EXT4_IOC_MIGRATE ioctl is set to require synchronous updates because the file descriptor is opened with O_SYNC. This can lead to the jbd2_journal_stop() function calling jbd2_might_wait_for_commit(), potentially causing a deadlock if the EXT4_IOC_MIGRATE call races with a write(2) system call. This problem only arises when CONFIG_PROVE_LOCKING is enabled. In this case, the jbd2_might_wait_for_commit macro locks jbd2_handle in the jbd2_journal_stop function while i_data_sem is locked. This triggers lockdep because the jbd2_journal_start function might also lock the same jbd2_handle simultaneously. Found by Linux Verification Center (linuxtesting.org) with syzkaller. Rule: add

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix system hang while resume with TBT monitor [Why] Connected with a Thunderbolt monitor and do the suspend and the system may hang while resume. The TBT monitor HPD will be triggered during the resume procedure and call the drm_client_modeset_probe() while struct drm_connector connector->dev->master is NULL. It will mess up the pipe topology after resume. [How] Skip the TBT monitor HPD during the resume procedure because we currently will probe the connectors after resume by default. (cherry picked from commit 453f86a26945207a16b8f66aaed5962dc2b95b85)

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: static_call: Handle module init failure correctly in static_call_del_module() Module insertion invokes static_call_add_module() to initialize the static calls in a module. static_call_add_module() invokes __static_call_init(), which allocates a struct static_call_mod to either encapsulate the built-in static call sites of the associated key into it so further modules can be added or to append the module to the module chain. If that allocation fails the function returns with an error code and the module core invokes static_call_del_module() to clean up eventually added static_call_mod entries. This works correctly, when all keys used by the module were converted over to a module chain before the failure. If not then static_call_del_module() causes a #GP as it blindly assumes that key::mods points to a valid struct static_call_mod. The problem is that key::mods is not a individual struct member of struct static_call_key, it's part of a union to save space: union { /* bit 0: 0 = mods, 1 = sites */ unsigned long type; struct static_call_mod *mods; struct static_call_site *sites; }; key::sites is a pointer to the list of built-in usage sites of the static call. The type of the pointer is differentiated by bit 0. A mods pointer has the bit clear, the sites pointer has the bit set. As static_call_del_module() blidly assumes that the pointer is a valid static_call_mod type, it fails to check for this failure case and dereferences the pointer to the list of built-in call sites, which is obviously bogus. Cure it by checking whether the key has a sites or a mods pointer. If it's a sites pointer then the key is not to be touched. As the sites are walked in the same order as in __static_call_init() the site walk can be terminated because all subsequent sites have not been touched by the init code due to the error exit. If it was converted before the allocation fail, then the inner loop which searches for a module match will find nothing. A fail in the second allocation in __static_call_init() is harmless and does not require special treatment. The first allocation succeeded and converted the key to a module chain. That first entry has mod::mod == NULL and mod::next == NULL, so the inner loop of static_call_del_module() will neither find a module match nor a module chain. The next site in the walk was either already converted, but can't match the module, or it will exit the outer loop because it has a static_call_site pointer and not a static_call_mod pointer.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix error path in multi-packet WQE transmit Remove the erroneous unmap in case no DMA mapping was established The multi-packet WQE transmit code attempts to obtain a DMA mapping for the skb. This could fail, e.g. under memory pressure, when the IOMMU driver just can't allocate more memory for page tables. While the code tries to handle this in the path below the err_unmap label it erroneously unmaps one entry from the sq's FIFO list of active mappings. Since the current map attempt failed this unmap is removing some random DMA mapping that might still be required. If the PCI function now presents that IOVA, the IOMMU may assumes a rogue DMA access and e.g. on s390 puts the PCI function in error state. The erroneous behavior was seen in a stress-test environment that created memory pressure.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix NULL deref in mlx5e_tir_builder_alloc() In mlx5e_tir_builder_alloc() kvzalloc() may return NULL which is dereferenced on the next line in a reference to the modify field. Found by Linux Verification Center (linuxtesting.org) with SVACE.

0.0% 2024-10-21
4.7 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: net: dsa: improve shutdown sequence Alexander Sverdlin presents 2 problems during shutdown with the lan9303 driver. One is specific to lan9303 and the other just happens to reproduce there. The first problem is that lan9303 is unique among DSA drivers in that it calls dev_get_drvdata() at "arbitrary runtime" (not probe, not shutdown, not remove): phy_state_machine() -> ... -> dsa_user_phy_read() -> ds->ops->phy_read() -> lan9303_phy_read() -> chip->ops->phy_read() -> lan9303_mdio_phy_read() -> dev_get_drvdata() But we never stop the phy_state_machine(), so it may continue to run after dsa_switch_shutdown(). Our common pattern in all DSA drivers is to set drvdata to NULL to suppress the remove() method that may come afterwards. But in this case it will result in an NPD. The second problem is that the way in which we set dp->conduit->dsa_ptr = NULL; is concurrent with receive packet processing. dsa_switch_rcv() checks once whether dev->dsa_ptr is NULL, but afterwards, rather than continuing to use that non-NULL value, dev->dsa_ptr is dereferenced again and again without NULL checks: dsa_conduit_find_user() and many other places. In between dereferences, there is no locking to ensure that what was valid once continues to be valid. Both problems have the common aspect that closing the conduit interface solves them. In the first case, dev_close(conduit) triggers the NETDEV_GOING_DOWN event in dsa_user_netdevice_event() which closes user ports as well. dsa_port_disable_rt() calls phylink_stop(), which synchronously stops the phylink state machine, and ds->ops->phy_read() will thus no longer call into the driver after this point. In the second case, dev_close(conduit) should do this, as per Documentation/networking/driver.rst: | Quiescence | ---------- | | After the ndo_stop routine has been called, the hardware must | not receive or transmit any data. All in flight packets must | be aborted. If necessary, poll or wait for completion of | any reset commands. So it should be sufficient to ensure that later, when we zeroize conduit->dsa_ptr, there will be no concurrent dsa_switch_rcv() call on this conduit. The addition of the netif_device_detach() function is to ensure that ioctls, rtnetlinks and ethtool requests on the user ports no longer propagate down to the driver - we're no longer prepared to handle them. The race condition actually did not exist when commit 0650bf52b31f ("net: dsa: be compatible with masters which unregister on shutdown") first introduced dsa_switch_shutdown(). It was created later, when we stopped unregistering the user interfaces from a bad spot, and we just replaced that sequence with a racy zeroization of conduit->dsa_ptr (one which doesn't ensure that the interfaces aren't up).

0.0% 2024-10-21
7.5 HIGH

In the Linux kernel, the following vulnerability has been resolved: net: ethernet: lantiq_etop: fix memory disclosure When applying padding, the buffer is not zeroed, which results in memory disclosure. The mentioned data is observed on the wire. This patch uses skb_put_padto() to pad Ethernet frames properly. The mentioned function zeroes the expanded buffer. In case the packet cannot be padded it is silently dropped. Statistics are also not incremented. This driver does not support statistics in the old 32-bit format or the new 64-bit format. These will be added in the future. In its current form, the patch should be easily backported to stable versions. Ethernet MACs on Amazon-SE and Danube cannot do padding of the packets in hardware, so software padding must be applied.

0.1% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: cifs: Fix buffer overflow when parsing NFS reparse points ReparseDataLength is sum of the InodeType size and DataBuffer size. So to get DataBuffer size it is needed to subtract InodeType's size from ReparseDataLength. Function cifs_strndup_from_utf16() is currentlly accessing buf->DataBuffer at position after the end of the buffer because it does not subtract InodeType size from the length. Fix this problem and correctly subtract variable len. Member InodeType is present only when reparse buffer is large enough. Check for ReparseDataLength before accessing InodeType to prevent another invalid memory access. Major and minor rdev values are present also only when reparse buffer is large enough. Check for reparse buffer size before calling reparse_mkdev().

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: block: fix integer overflow in BLKSECDISCARD I independently rediscovered commit 22d24a544b0d49bbcbd61c8c0eaf77d3c9297155 block: fix overflow in blk_ioctl_discard() but for secure erase. Same problem: uint64_t r[2] = {512, 18446744073709551104ULL}; ioctl(fd, BLKSECDISCARD, r); will enter near infinite loop inside blkdev_issue_secure_erase(): a.out: attempt to access beyond end of device loop0: rw=5, sector=3399043073, nr_sectors = 1024 limit=2048 bio_check_eod: 3286214 callbacks suppressed

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: drm/stm: Avoid use-after-free issues with crtc and plane ltdc_load() calls functions drm_crtc_init_with_planes(), drm_universal_plane_init() and drm_encoder_init(). These functions should not be called with parameters allocated with devm_kzalloc() to avoid use-after-free issues [1]. Use allocations managed by the DRM framework. Found by Linux Verification Center (linuxtesting.org). [1] https://lore.kernel.org/lkml/u366i76e3qhh3ra5oxrtngjtm2u5lterkekcz6y2jkndhuxzli@diujon4h7qwb/

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: amdkfd_free_gtt_mem clear the correct pointer Pass pointer reference to amdgpu_bo_unref to clear the correct pointer, otherwise amdgpu_bo_unref clear the local variable, the original pointer not set to NULL, this could cause use-after-free bug.

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix double free issue during amdgpu module unload Flexible endpoints use DIGs from available inflexible endpoints, so only the encoders of inflexible links need to be freed. Otherwise, a double free issue may occur when unloading the amdgpu module. [ 279.190523] RIP: 0010:__slab_free+0x152/0x2f0 [ 279.190577] Call Trace: [ 279.190580] <TASK> [ 279.190582] ? show_regs+0x69/0x80 [ 279.190590] ? die+0x3b/0x90 [ 279.190595] ? do_trap+0xc8/0xe0 [ 279.190601] ? do_error_trap+0x73/0xa0 [ 279.190605] ? __slab_free+0x152/0x2f0 [ 279.190609] ? exc_invalid_op+0x56/0x70 [ 279.190616] ? __slab_free+0x152/0x2f0 [ 279.190642] ? asm_exc_invalid_op+0x1f/0x30 [ 279.190648] ? dcn10_link_encoder_destroy+0x19/0x30 [amdgpu] [ 279.191096] ? __slab_free+0x152/0x2f0 [ 279.191102] ? dcn10_link_encoder_destroy+0x19/0x30 [amdgpu] [ 279.191469] kfree+0x260/0x2b0 [ 279.191474] dcn10_link_encoder_destroy+0x19/0x30 [amdgpu] [ 279.191821] link_destroy+0xd7/0x130 [amdgpu] [ 279.192248] dc_destruct+0x90/0x270 [amdgpu] [ 279.192666] dc_destroy+0x19/0x40 [amdgpu] [ 279.193020] amdgpu_dm_fini+0x16e/0x200 [amdgpu] [ 279.193432] dm_hw_fini+0x26/0x40 [amdgpu] [ 279.193795] amdgpu_device_fini_hw+0x24c/0x400 [amdgpu] [ 279.194108] amdgpu_driver_unload_kms+0x4f/0x70 [amdgpu] [ 279.194436] amdgpu_pci_remove+0x40/0x80 [amdgpu] [ 279.194632] pci_device_remove+0x3a/0xa0 [ 279.194638] device_remove+0x40/0x70 [ 279.194642] device_release_driver_internal+0x1ad/0x210 [ 279.194647] driver_detach+0x4e/0xa0 [ 279.194650] bus_remove_driver+0x6f/0xf0 [ 279.194653] driver_unregister+0x33/0x60 [ 279.194657] pci_unregister_driver+0x44/0x90 [ 279.194662] amdgpu_exit+0x19/0x1f0 [amdgpu] [ 279.194939] __do_sys_delete_module.isra.0+0x198/0x2f0 [ 279.194946] __x64_sys_delete_module+0x16/0x20 [ 279.194950] do_syscall_64+0x58/0x120 [ 279.194954] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 279.194980] </TASK>

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: platform/x86: x86-android-tablets: Fix use after free on platform_device_register() errors x86_android_tablet_remove() frees the pdevs[] array, so it should not be used after calling x86_android_tablet_remove(). When platform_device_register() fails, store the pdevs[x] PTR_ERR() value into the local ret variable before calling x86_android_tablet_remove() to avoid using pdevs[] after it has been freed.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: i2c: stm32f7: Do not prepare/unprepare clock during runtime suspend/resume In case there is any sort of clock controller attached to this I2C bus controller, for example Versaclock or even an AIC32x4 I2C codec, then an I2C transfer triggered from the clock controller clk_ops .prepare callback may trigger a deadlock on drivers/clk/clk.c prepare_lock mutex. This is because the clock controller first grabs the prepare_lock mutex and then performs the prepare operation, including its I2C access. The I2C access resumes this I2C bus controller via .runtime_resume callback, which calls clk_prepare_enable(), which attempts to grab the prepare_lock mutex again and deadlocks. Since the clock are already prepared since probe() and unprepared in remove(), use simple clk_enable()/clk_disable() calls to enable and disable the clock on runtime suspend and resume, to avoid hitting the prepare_lock mutex.

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: ext4: drop ppath from ext4_ext_replay_update_ex() to avoid double-free When calling ext4_force_split_extent_at() in ext4_ext_replay_update_ex(), the 'ppath' is updated but it is the 'path' that is freed, thus potentially triggering a double-free in the following process: ext4_ext_replay_update_ex ppath = path ext4_force_split_extent_at(&ppath) ext4_split_extent_at ext4_ext_insert_extent ext4_ext_create_new_leaf ext4_ext_grow_indepth ext4_find_extent if (depth > path[0].p_maxdepth) kfree(path) ---> path First freed *orig_path = path = NULL ---> null ppath kfree(path) ---> path double-free !!! So drop the unnecessary ppath and use path directly to avoid this problem. And use ext4_find_extent() directly to update path, avoiding unnecessary memory allocation and freeing. Also, propagate the error returned by ext4_find_extent() instead of using strange error codes.

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: aoe: fix the potential use-after-free problem in more places For fixing CVE-2023-6270, f98364e92662 ("aoe: fix the potential use-after-free problem in aoecmd_cfg_pkts") makes tx() calling dev_put() instead of doing in aoecmd_cfg_pkts(). It avoids that the tx() runs into use-after-free. Then Nicolai Stange found more places in aoe have potential use-after-free problem with tx(). e.g. revalidate(), aoecmd_ata_rw(), resend(), probe() and aoecmd_cfg_rsp(). Those functions also use aoenet_xmit() to push packet to tx queue. So they should also use dev_hold() to increase the refcnt of skb->dev. On the other hand, moving dev_put() to tx() causes that the refcnt of skb->dev be reduced to a negative value, because corresponding dev_hold() are not called in revalidate(), aoecmd_ata_rw(), resend(), probe(), and aoecmd_cfg_rsp(). This patch fixed this issue.

0.0% 2024-10-21
7.0 HIGH

In the Linux kernel, the following vulnerability has been resolved: media: venus: fix use after free bug in venus_remove due to race condition in venus_probe, core->work is bound with venus_sys_error_handler, which is used to handle error. The code use core->sys_err_done to make sync work. The core->work is started in venus_event_notify. If we call venus_remove, there might be an unfished work. The possible sequence is as follows: CPU0 CPU1 |venus_sys_error_handler venus_remove | hfi_destroy | venus_hfi_destroy | kfree(hdev); | |hfi_reinit |venus_hfi_queues_reinit |//use hdev Fix it by canceling the work in venus_remove.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: gso: fix udp gso fraglist segmentation after pull from frag_list Detect gso fraglist skbs with corrupted geometry (see below) and pass these to skb_segment instead of skb_segment_list, as the first can segment them correctly. Valid SKB_GSO_FRAGLIST skbs - consist of two or more segments - the head_skb holds the protocol headers plus first gso_size - one or more frag_list skbs hold exactly one segment - all but the last must be gso_size Optional datapath hooks such as NAT and BPF (bpf_skb_pull_data) can modify these skbs, breaking these invariants. In extreme cases they pull all data into skb linear. For UDP, this causes a NULL ptr deref in __udpv4_gso_segment_list_csum at udp_hdr(seg->next)->dest. Detect invalid geometry due to pull, by checking head_skb size. Don't just drop, as this may blackhole a destination. Convert to be able to pass to regular skb_segment.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: net: stmmac: Fix zero-division error when disabling tc cbs The commit b8c43360f6e4 ("net: stmmac: No need to calculate speed divider when offload is disabled") allows the "port_transmit_rate_kbps" to be set to a value of 0, which is then passed to the "div_s64" function when tc-cbs is disabled. This leads to a zero-division error. When tc-cbs is disabled, the idleslope, sendslope, and credit values the credit values are not required to be configured. Therefore, adding a return statement after setting the txQ mode to DCB when tc-cbs is disabled would prevent a zero-division error.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: uprobes: fix kernel info leak via "[uprobes]" vma xol_add_vma() maps the uninitialized page allocated by __create_xol_area() into userspace. On some architectures (x86) this memory is readable even without VM_READ, VM_EXEC results in the same pgprot_t as VM_EXEC|VM_READ, although this doesn't really matter, debugger can read this memory anyway.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: NFSD: Limit the number of concurrent async COPY operations Nothing appears to limit the number of concurrent async COPY operations that clients can start. In addition, AFAICT each async COPY can copy an unlimited number of 4MB chunks, so can run for a long time. Thus IMO async COPY can become a DoS vector. Add a restriction mechanism that bounds the number of concurrent background COPY operations. Start simple and try to be fair -- this patch implements a per-namespace limit. An async COPY request that occurs while this limit is exceeded gets NFS4ERR_DELAY. The requesting client can choose to send the request again after a delay or fall back to a traditional read/write style copy. If there is need to make the mechanism more sophisticated, we can visit that in future patches.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: r8169: add tally counter fields added with RTL8125 RTL8125 added fields to the tally counter, what may result in the chip dma'ing these new fields to unallocated memory. Therefore make sure that the allocated memory area is big enough to hold all of the tally counter values, even if we use only parts of it.

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix index out of bounds in DCN30 color transformation This commit addresses a potential index out of bounds issue in the `cm3_helper_translate_curve_to_hw_format` function in the DCN30 color management module. The issue could occur when the index 'i' exceeds the number of transfer function points (TRANSFER_FUNC_POINTS). The fix adds a check to ensure 'i' is within bounds before accessing the transfer function points. If 'i' is out of bounds, the function returns false to indicate an error. drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:180 cm3_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.red' 1025 <= s32max drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:181 cm3_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.green' 1025 <= s32max drivers/gpu/drm/amd/amdgpu/../display/dc/dcn30/dcn30_cm_common.c:182 cm3_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.blue' 1025 <= s32max

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: ocfs2: cancel dqi_sync_work before freeing oinfo ocfs2_global_read_info() will initialize and schedule dqi_sync_work at the end, if error occurs after successfully reading global quota, it will trigger the following warning with CONFIG_DEBUG_OBJECTS_* enabled: ODEBUG: free active (active state 0) object: 00000000d8b0ce28 object type: timer_list hint: qsync_work_fn+0x0/0x16c This reports that there is an active delayed work when freeing oinfo in error handling, so cancel dqi_sync_work first. BTW, return status instead of -1 when .read_file_info fails.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ocfs2: remove unreasonable unlock in ocfs2_read_blocks Patch series "Misc fixes for ocfs2_read_blocks", v5. This series contains 2 fixes for ocfs2_read_blocks(). The first patch fix the issue reported by syzbot, which detects bad unlock balance in ocfs2_read_blocks(). The second patch fixes an issue reported by Heming Zhao when reviewing above fix. This patch (of 2): There was a lock release before exiting, so remove the unreasonable unlock.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: mailbox: bcm2835: Fix timeout during suspend mode During noirq suspend phase the Raspberry Pi power driver suffer of firmware property timeouts. The reason is that the IRQ of the underlying BCM2835 mailbox is disabled and rpi_firmware_property_list() will always run into a timeout [1]. Since the VideoCore side isn't consider as a wakeup source, set the IRQF_NO_SUSPEND flag for the mailbox IRQ in order to keep it enabled during suspend-resume cycle. [1] PM: late suspend of devices complete after 1.754 msecs WARNING: CPU: 0 PID: 438 at drivers/firmware/raspberrypi.c:128 rpi_firmware_property_list+0x204/0x22c Firmware transaction 0x00028001 timeout Modules linked in: CPU: 0 PID: 438 Comm: bash Tainted: G C 6.9.3-dirty #17 Hardware name: BCM2835 Call trace: unwind_backtrace from show_stack+0x18/0x1c show_stack from dump_stack_lvl+0x34/0x44 dump_stack_lvl from __warn+0x88/0xec __warn from warn_slowpath_fmt+0x7c/0xb0 warn_slowpath_fmt from rpi_firmware_property_list+0x204/0x22c rpi_firmware_property_list from rpi_firmware_property+0x68/0x8c rpi_firmware_property from rpi_firmware_set_power+0x54/0xc0 rpi_firmware_set_power from _genpd_power_off+0xe4/0x148 _genpd_power_off from genpd_sync_power_off+0x7c/0x11c genpd_sync_power_off from genpd_finish_suspend+0xcc/0xe0 genpd_finish_suspend from dpm_run_callback+0x78/0xd0 dpm_run_callback from device_suspend_noirq+0xc0/0x238 device_suspend_noirq from dpm_suspend_noirq+0xb0/0x168 dpm_suspend_noirq from suspend_devices_and_enter+0x1b8/0x5ac suspend_devices_and_enter from pm_suspend+0x254/0x2e4 pm_suspend from state_store+0xa8/0xd4 state_store from kernfs_fop_write_iter+0x154/0x1a0 kernfs_fop_write_iter from vfs_write+0x12c/0x184 vfs_write from ksys_write+0x78/0xc0 ksys_write from ret_fast_syscall+0x0/0x54 Exception stack(0xcc93dfa8 to 0xcc93dff0) [...] PM: noirq suspend of devices complete after 3095.584 msecs

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ACPICA: check null return of ACPI_ALLOCATE_ZEROED() in acpi_db_convert_to_package() ACPICA commit 4d4547cf13cca820ff7e0f859ba83e1a610b9fd0 ACPI_ALLOCATE_ZEROED() may fail, elements might be NULL and will cause NULL pointer dereference later. [ rjw: Subject and changelog edits ]

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: media: i2c: ar0521: Use cansleep version of gpiod_set_value() If we use GPIO reset from I2C port expander, we must use *_cansleep() variant of GPIO functions. This was not done in ar0521_power_on()/ar0521_power_off() functions. Let's fix that. ------------[ cut here ]------------ WARNING: CPU: 0 PID: 11 at drivers/gpio/gpiolib.c:3496 gpiod_set_value+0x74/0x7c Modules linked in: CPU: 0 PID: 11 Comm: kworker/u16:0 Not tainted 6.10.0 #53 Hardware name: Diasom DS-RK3568-SOM-EVB (DT) Workqueue: events_unbound deferred_probe_work_func pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : gpiod_set_value+0x74/0x7c lr : ar0521_power_on+0xcc/0x290 sp : ffffff8001d7ab70 x29: ffffff8001d7ab70 x28: ffffff80027dcc90 x27: ffffff8003c82000 x26: ffffff8003ca9250 x25: ffffffc080a39c60 x24: ffffff8003ca9088 x23: ffffff8002402720 x22: ffffff8003ca9080 x21: ffffff8003ca9088 x20: 0000000000000000 x19: ffffff8001eb2a00 x18: ffffff80efeeac80 x17: 756d2d6332692f30 x16: 0000000000000000 x15: 0000000000000000 x14: ffffff8001d91d40 x13: 0000000000000016 x12: ffffffc080e98930 x11: ffffff8001eb2880 x10: 0000000000000890 x9 : ffffff8001d7a9f0 x8 : ffffff8001d92570 x7 : ffffff80efeeac80 x6 : 000000003fc6e780 x5 : ffffff8001d91c80 x4 : 0000000000000002 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000001 Call trace: gpiod_set_value+0x74/0x7c ar0521_power_on+0xcc/0x290 ...

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: ext4: fix timer use-after-free on failed mount Syzbot has found an ODEBUG bug in ext4_fill_super The del_timer_sync function cancels the s_err_report timer, which reminds about filesystem errors daily. We should guarantee the timer is no longer active before kfree(sbi). When filesystem mounting fails, the flow goes to failed_mount3, where an error occurs when ext4_stop_mmpd is called, causing a read I/O failure. This triggers the ext4_handle_error function that ultimately re-arms the timer, leaving the s_err_report timer active before kfree(sbi) is called. Fix the issue by canceling the s_err_report timer after calling ext4_stop_mmpd.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: jbd2: stop waiting for space when jbd2_cleanup_journal_tail() returns error In __jbd2_log_wait_for_space(), we might call jbd2_cleanup_journal_tail() to recover some journal space. But if an error occurs while executing jbd2_cleanup_journal_tail() (e.g., an EIO), we don't stop waiting for free space right away, we try other branches, and if j_committing_transaction is NULL (i.e., the tid is 0), we will get the following complain: ============================================ JBD2: I/O error when updating journal superblock for sdd-8. __jbd2_log_wait_for_space: needed 256 blocks and only had 217 space available __jbd2_log_wait_for_space: no way to get more journal space in sdd-8 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 139804 at fs/jbd2/checkpoint.c:109 __jbd2_log_wait_for_space+0x251/0x2e0 Modules linked in: CPU: 2 PID: 139804 Comm: kworker/u8:3 Not tainted 6.6.0+ #1 RIP: 0010:__jbd2_log_wait_for_space+0x251/0x2e0 Call Trace: <TASK> add_transaction_credits+0x5d1/0x5e0 start_this_handle+0x1ef/0x6a0 jbd2__journal_start+0x18b/0x340 ext4_dirty_inode+0x5d/0xb0 __mark_inode_dirty+0xe4/0x5d0 generic_update_time+0x60/0x70 [...] ============================================ So only if jbd2_cleanup_journal_tail() returns 1, i.e., there is nothing to clean up at the moment, continue to try to reclaim free space in other ways. Note that this fix relies on commit 6f6a6fda2945 ("jbd2: fix ocfs2 corrupt when updating journal superblock fails") to make jbd2_cleanup_journal_tail return the correct error code.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ocfs2: reserve space for inline xattr before attaching reflink tree One of our customers reported a crash and a corrupted ocfs2 filesystem. The crash was due to the detection of corruption. Upon troubleshooting, the fsck -fn output showed the below corruption [EXTENT_LIST_FREE] Extent list in owner 33080590 claims 230 as the next free chain record, but fsck believes the largest valid value is 227. Clamp the next record value? n The stat output from the debugfs.ocfs2 showed the following corruption where the "Next Free Rec:" had overshot the "Count:" in the root metadata block. Inode: 33080590 Mode: 0640 Generation: 2619713622 (0x9c25a856) FS Generation: 904309833 (0x35e6ac49) CRC32: 00000000 ECC: 0000 Type: Regular Attr: 0x0 Flags: Valid Dynamic Features: (0x16) HasXattr InlineXattr Refcounted Extended Attributes Block: 0 Extended Attributes Inline Size: 256 User: 0 (root) Group: 0 (root) Size: 281320357888 Links: 1 Clusters: 141738 ctime: 0x66911b56 0x316edcb8 -- Fri Jul 12 06:02:30.829349048 2024 atime: 0x66911d6b 0x7f7a28d -- Fri Jul 12 06:11:23.133669517 2024 mtime: 0x66911b56 0x12ed75d7 -- Fri Jul 12 06:02:30.317552087 2024 dtime: 0x0 -- Wed Dec 31 17:00:00 1969 Refcount Block: 2777346 Last Extblk: 2886943 Orphan Slot: 0 Sub Alloc Slot: 0 Sub Alloc Bit: 14 Tree Depth: 1 Count: 227 Next Free Rec: 230 ## Offset Clusters Block# 0 0 2310 2776351 1 2310 2139 2777375 2 4449 1221 2778399 3 5670 731 2779423 4 6401 566 2780447 ....... .... ....... ....... .... ....... The issue was in the reflink workfow while reserving space for inline xattr. The problematic function is ocfs2_reflink_xattr_inline(). By the time this function is called the reflink tree is already recreated at the destination inode from the source inode. At this point, this function reserves space for inline xattrs at the destination inode without even checking if there is space at the root metadata block. It simply reduces the l_count from 243 to 227 thereby making space of 256 bytes for inline xattr whereas the inode already has extents beyond this index (in this case up to 230), thereby causing corruption. The fix for this is to reserve space for inline metadata at the destination inode before the reflink tree gets recreated. The customer has verified the fix.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix null-ptr-deref when journal load failed. During the mounting process, if journal_reset() fails because of too short journal, then lead to jbd2_journal_load() fails with NULL j_sb_buffer. Subsequently, ocfs2_journal_shutdown() calls jbd2_journal_flush()->jbd2_cleanup_journal_tail()-> __jbd2_update_log_tail()->jbd2_journal_update_sb_log_tail() ->lock_buffer(journal->j_sb_buffer), resulting in a null-pointer dereference error. To resolve this issue, we should check the JBD2_LOADED flag to ensure the journal was properly loaded. Additionally, use journal instead of osb->journal directly to simplify the code.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ACPI: battery: Fix possible crash when unregistering a battery hook When a battery hook returns an error when adding a new battery, then the battery hook is automatically unregistered. However the battery hook provider cannot know that, so it will later call battery_hook_unregister() on the already unregistered battery hook, resulting in a crash. Fix this by using the list head to mark already unregistered battery hooks as already being unregistered so that they can be ignored by battery_hook_unregister().

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: static_call: Replace pointless WARN_ON() in static_call_module_notify() static_call_module_notify() triggers a WARN_ON(), when memory allocation fails in __static_call_add_module(). That's not really justified, because the failure case must be correctly handled by the well known call chain and the error code is passed through to the initiating userspace application. A memory allocation fail is not a fatal problem, but the WARN_ON() takes the machine out when panic_on_warn is set. Replace it with a pr_warn().

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: prevent nf_skb_duplicated corruption syzbot found that nf_dup_ipv4() or nf_dup_ipv6() could write per-cpu variable nf_skb_duplicated in an unsafe way [1]. Disabling preemption as hinted by the splat is not enough, we have to disable soft interrupts as well. [1] BUG: using __this_cpu_write() in preemptible [00000000] code: syz.4.282/6316 caller is nf_dup_ipv4+0x651/0x8f0 net/ipv4/netfilter/nf_dup_ipv4.c:87 CPU: 0 UID: 0 PID: 6316 Comm: syz.4.282 Not tainted 6.11.0-rc7-syzkaller-00104-g7052622fccb1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:93 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:119 check_preemption_disabled+0x10e/0x120 lib/smp_processor_id.c:49 nf_dup_ipv4+0x651/0x8f0 net/ipv4/netfilter/nf_dup_ipv4.c:87 nft_dup_ipv4_eval+0x1db/0x300 net/ipv4/netfilter/nft_dup_ipv4.c:30 expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline] nft_do_chain+0x4ad/0x1da0 net/netfilter/nf_tables_core.c:288 nft_do_chain_ipv4+0x202/0x320 net/netfilter/nft_chain_filter.c:23 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xc3/0x220 net/netfilter/core.c:626 nf_hook+0x2c4/0x450 include/linux/netfilter.h:269 NF_HOOK_COND include/linux/netfilter.h:302 [inline] ip_output+0x185/0x230 net/ipv4/ip_output.c:433 ip_local_out net/ipv4/ip_output.c:129 [inline] ip_send_skb+0x74/0x100 net/ipv4/ip_output.c:1495 udp_send_skb+0xacf/0x1650 net/ipv4/udp.c:981 udp_sendmsg+0x1c21/0x2a60 net/ipv4/udp.c:1269 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x1a6/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2597 ___sys_sendmsg net/socket.c:2651 [inline] __sys_sendmmsg+0x3b2/0x740 net/socket.c:2737 __do_sys_sendmmsg net/socket.c:2766 [inline] __se_sys_sendmmsg net/socket.c:2763 [inline] __x64_sys_sendmmsg+0xa0/0xb0 net/socket.c:2763 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f4ce4f7def9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f4ce5d4a038 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00007f4ce5135f80 RCX: 00007f4ce4f7def9 RDX: 0000000000000001 RSI: 0000000020005d40 RDI: 0000000000000006 RBP: 00007f4ce4ff0b76 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f4ce5135f80 R15: 00007ffd4cbc6d68 </TASK>

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix possible crash on mgmt_index_removed If mgmt_index_removed is called while there are commands queued on cmd_sync it could lead to crashes like the bellow trace: 0x0000053D: __list_del_entry_valid_or_report+0x98/0xdc 0x0000053D: mgmt_pending_remove+0x18/0x58 [bluetooth] 0x0000053E: mgmt_remove_adv_monitor_complete+0x80/0x108 [bluetooth] 0x0000053E: hci_cmd_sync_work+0xbc/0x164 [bluetooth] So while handling mgmt_index_removed this attempts to dequeue commands passed as user_data to cmd_sync.

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix uaf in l2cap_connect [Syzbot reported] BUG: KASAN: slab-use-after-free in l2cap_connect.constprop.0+0x10d8/0x1270 net/bluetooth/l2cap_core.c:3949 Read of size 8 at addr ffff8880241e9800 by task kworker/u9:0/54 CPU: 0 UID: 0 PID: 54 Comm: kworker/u9:0 Not tainted 6.11.0-rc6-syzkaller-00268-g788220eee30d #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 Workqueue: hci2 hci_rx_work Call Trace: <TASK> __dump_stack lib/dump_stack.c:93 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:119 print_address_description mm/kasan/report.c:377 [inline] print_report+0xc3/0x620 mm/kasan/report.c:488 kasan_report+0xd9/0x110 mm/kasan/report.c:601 l2cap_connect.constprop.0+0x10d8/0x1270 net/bluetooth/l2cap_core.c:3949 l2cap_connect_req net/bluetooth/l2cap_core.c:4080 [inline] l2cap_bredr_sig_cmd net/bluetooth/l2cap_core.c:4772 [inline] l2cap_sig_channel net/bluetooth/l2cap_core.c:5543 [inline] l2cap_recv_frame+0xf0b/0x8eb0 net/bluetooth/l2cap_core.c:6825 l2cap_recv_acldata+0x9b4/0xb70 net/bluetooth/l2cap_core.c:7514 hci_acldata_packet net/bluetooth/hci_core.c:3791 [inline] hci_rx_work+0xaab/0x1610 net/bluetooth/hci_core.c:4028 process_one_work+0x9c5/0x1b40 kernel/workqueue.c:3231 process_scheduled_works kernel/workqueue.c:3312 [inline] worker_thread+0x6c8/0xed0 kernel/workqueue.c:3389 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 ... Freed by task 5245: kasan_save_stack+0x33/0x60 mm/kasan/common.c:47 kasan_save_track+0x14/0x30 mm/kasan/common.c:68 kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:579 poison_slab_object+0xf7/0x160 mm/kasan/common.c:240 __kasan_slab_free+0x32/0x50 mm/kasan/common.c:256 kasan_slab_free include/linux/kasan.h:184 [inline] slab_free_hook mm/slub.c:2256 [inline] slab_free mm/slub.c:4477 [inline] kfree+0x12a/0x3b0 mm/slub.c:4598 l2cap_conn_free net/bluetooth/l2cap_core.c:1810 [inline] kref_put include/linux/kref.h:65 [inline] l2cap_conn_put net/bluetooth/l2cap_core.c:1822 [inline] l2cap_conn_del+0x59d/0x730 net/bluetooth/l2cap_core.c:1802 l2cap_connect_cfm+0x9e6/0xf80 net/bluetooth/l2cap_core.c:7241 hci_connect_cfm include/net/bluetooth/hci_core.h:1960 [inline] hci_conn_failed+0x1c3/0x370 net/bluetooth/hci_conn.c:1265 hci_abort_conn_sync+0x75a/0xb50 net/bluetooth/hci_sync.c:5583 abort_conn_sync+0x197/0x360 net/bluetooth/hci_conn.c:2917 hci_cmd_sync_work+0x1a4/0x410 net/bluetooth/hci_sync.c:328 process_one_work+0x9c5/0x1b40 kernel/workqueue.c:3231 process_scheduled_works kernel/workqueue.c:3312 [inline] worker_thread+0x6c8/0xed0 kernel/workqueue.c:3389 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: net: avoid potential underflow in qdisc_pkt_len_init() with UFO After commit 7c6d2ecbda83 ("net: be more gentle about silly gso requests coming from user") virtio_net_hdr_to_skb() had sanity check to detect malicious attempts from user space to cook a bad GSO packet. Then commit cf9acc90c80ec ("net: virtio_net_hdr_to_skb: count transport header in UFO") while fixing one issue, allowed user space to cook a GSO packet with the following characteristic : IPv4 SKB_GSO_UDP, gso_size=3, skb->len = 28. When this packet arrives in qdisc_pkt_len_init(), we end up with hdr_len = 28 (IPv4 header + UDP header), matching skb->len Then the following sets gso_segs to 0 : gso_segs = DIV_ROUND_UP(skb->len - hdr_len, shinfo->gso_size); Then later we set qdisc_skb_cb(skb)->pkt_len to back to zero :/ qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; This leads to the following crash in fq_codel [1] qdisc_pkt_len_init() is best effort, we only want an estimation of the bytes sent on the wire, not crashing the kernel. This patch is fixing this particular issue, a following one adds more sanity checks for another potential bug. [1] [ 70.724101] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 70.724561] #PF: supervisor read access in kernel mode [ 70.724561] #PF: error_code(0x0000) - not-present page [ 70.724561] PGD 10ac61067 P4D 10ac61067 PUD 107ee2067 PMD 0 [ 70.724561] Oops: Oops: 0000 [#1] SMP NOPTI [ 70.724561] CPU: 11 UID: 0 PID: 2163 Comm: b358537762 Not tainted 6.11.0-virtme #991 [ 70.724561] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 70.724561] RIP: 0010:fq_codel_enqueue (net/sched/sch_fq_codel.c:120 net/sched/sch_fq_codel.c:168 net/sched/sch_fq_codel.c:230) sch_fq_codel [ 70.724561] Code: 24 08 49 c1 e1 06 44 89 7c 24 18 45 31 ed 45 31 c0 31 ff 89 44 24 14 4c 03 8b 90 01 00 00 eb 04 39 ca 73 37 4d 8b 39 83 c7 01 <49> 8b 17 49 89 11 41 8b 57 28 45 8b 5f 34 49 c7 07 00 00 00 00 49 All code ======== 0: 24 08 and $0x8,%al 2: 49 c1 e1 06 shl $0x6,%r9 6: 44 89 7c 24 18 mov %r15d,0x18(%rsp) b: 45 31 ed xor %r13d,%r13d e: 45 31 c0 xor %r8d,%r8d 11: 31 ff xor %edi,%edi 13: 89 44 24 14 mov %eax,0x14(%rsp) 17: 4c 03 8b 90 01 00 00 add 0x190(%rbx),%r9 1e: eb 04 jmp 0x24 20: 39 ca cmp %ecx,%edx 22: 73 37 jae 0x5b 24: 4d 8b 39 mov (%r9),%r15 27: 83 c7 01 add $0x1,%edi 2a:* 49 8b 17 mov (%r15),%rdx <-- trapping instruction 2d: 49 89 11 mov %rdx,(%r9) 30: 41 8b 57 28 mov 0x28(%r15),%edx 34: 45 8b 5f 34 mov 0x34(%r15),%r11d 38: 49 c7 07 00 00 00 00 movq $0x0,(%r15) 3f: 49 rex.WB Code starting with the faulting instruction =========================================== 0: 49 8b 17 mov (%r15),%rdx 3: 49 89 11 mov %rdx,(%r9) 6: 41 8b 57 28 mov 0x28(%r15),%edx a: 45 8b 5f 34 mov 0x34(%r15),%r11d e: 49 c7 07 00 00 00 00 movq $0x0,(%r15) 15: 49 rex.WB [ 70.724561] RSP: 0018:ffff95ae85e6fb90 EFLAGS: 00000202 [ 70.724561] RAX: 0000000002000000 RBX: ffff95ae841de000 RCX: 0000000000000000 [ 70.724561] RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000001 [ 70.724561] RBP: ffff95ae85e6fbf8 R08: 0000000000000000 R09: ffff95b710a30000 [ 70.724561] R10: 0000000000000000 R11: bdf289445ce31881 R12: ffff95ae85e6fc58 [ 70.724561] R13: 0000000000000000 R14: 0000000000000040 R15: 0000000000000000 [ 70.724561] FS: 000000002c5c1380(0000) GS:ffff95bd7fcc0000(0000) knlGS:0000000000000000 [ 70.724561] CS: 0010 DS: 0000 ES: 0000 C ---truncated---

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: net: add more sanity checks to qdisc_pkt_len_init() One path takes care of SKB_GSO_DODGY, assuming skb->len is bigger than hdr_len. virtio_net_hdr_to_skb() does not fully dissect TCP headers, it only make sure it is at least 20 bytes. It is possible for an user to provide a malicious 'GSO' packet, total length of 80 bytes. - 20 bytes of IPv4 header - 60 bytes TCP header - a small gso_size like 8 virtio_net_hdr_to_skb() would declare this packet as a normal GSO packet, because it would see 40 bytes of payload, bigger than gso_size. We need to make detect this case to not underflow qdisc_skb_cb(skb)->pkt_len.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: ppp: do not assume bh is held in ppp_channel_bridge_input() Networking receive path is usually handled from BH handler. However, some protocols need to acquire the socket lock, and packets might be stored in the socket backlog is the socket was owned by a user process. In this case, release_sock(), __release_sock(), and sk_backlog_rcv() might call the sk->sk_backlog_rcv() handler in process context. sybot caught ppp was not considering this case in ppp_channel_bridge_input() : WARNING: inconsistent lock state 6.11.0-rc7-syzkaller-g5f5673607153 #0 Not tainted -------------------------------- inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage. ksoftirqd/1/24 [HC0[0]:SC1[1]:HE1:SE0] takes: ffff0000db7f11e0 (&pch->downl){+.?.}-{2:2}, at: spin_lock include/linux/spinlock.h:351 [inline] ffff0000db7f11e0 (&pch->downl){+.?.}-{2:2}, at: ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2272 [inline] ffff0000db7f11e0 (&pch->downl){+.?.}-{2:2}, at: ppp_input+0x16c/0x854 drivers/net/ppp/ppp_generic.c:2304 {SOFTIRQ-ON-W} state was registered at: lock_acquire+0x240/0x728 kernel/locking/lockdep.c:5759 __raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline] _raw_spin_lock+0x48/0x60 kernel/locking/spinlock.c:154 spin_lock include/linux/spinlock.h:351 [inline] ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2272 [inline] ppp_input+0x16c/0x854 drivers/net/ppp/ppp_generic.c:2304 pppoe_rcv_core+0xfc/0x314 drivers/net/ppp/pppoe.c:379 sk_backlog_rcv include/net/sock.h:1111 [inline] __release_sock+0x1a8/0x3d8 net/core/sock.c:3004 release_sock+0x68/0x1b8 net/core/sock.c:3558 pppoe_sendmsg+0xc8/0x5d8 drivers/net/ppp/pppoe.c:903 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] __sys_sendto+0x374/0x4f4 net/socket.c:2204 __do_sys_sendto net/socket.c:2216 [inline] __se_sys_sendto net/socket.c:2212 [inline] __arm64_sys_sendto+0xd8/0xf8 net/socket.c:2212 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x54/0x168 arch/arm64/kernel/entry-common.c:712 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598 irq event stamp: 282914 hardirqs last enabled at (282914): [<ffff80008b42e30c>] __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:151 [inline] hardirqs last enabled at (282914): [<ffff80008b42e30c>] _raw_spin_unlock_irqrestore+0x38/0x98 kernel/locking/spinlock.c:194 hardirqs last disabled at (282913): [<ffff80008b42e13c>] __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:108 [inline] hardirqs last disabled at (282913): [<ffff80008b42e13c>] _raw_spin_lock_irqsave+0x2c/0x7c kernel/locking/spinlock.c:162 softirqs last enabled at (282904): [<ffff8000801f8e88>] softirq_handle_end kernel/softirq.c:400 [inline] softirqs last enabled at (282904): [<ffff8000801f8e88>] handle_softirqs+0xa3c/0xbfc kernel/softirq.c:582 softirqs last disabled at (282909): [<ffff8000801fbdf8>] run_ksoftirqd+0x70/0x158 kernel/softirq.c:928 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&pch->downl); <Interrupt> lock(&pch->downl); *** DEADLOCK *** 1 lock held by ksoftirqd/1/24: #0: ffff80008f74dfa0 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire+0x10/0x4c include/linux/rcupdate.h:325 stack backtrace: CPU: 1 UID: 0 PID: 24 Comm: ksoftirqd/1 Not tainted 6.11.0-rc7-syzkaller-g5f5673607153 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 Call trace: dump_backtrace+0x1b8/0x1e4 arch/arm64/kernel/stacktrace.c:319 show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:326 __dump_sta ---truncated---

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: sctp: set sk_state back to CLOSED if autobind fails in sctp_listen_start In sctp_listen_start() invoked by sctp_inet_listen(), it should set the sk_state back to CLOSED if sctp_autobind() fails due to whatever reason. Otherwise, next time when calling sctp_inet_listen(), if sctp_sk(sk)->reuse is already set via setsockopt(SCTP_REUSE_PORT), sctp_sk(sk)->bind_hash will be dereferenced as sk_state is LISTENING, which causes a crash as bind_hash is NULL. KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] RIP: 0010:sctp_inet_listen+0x7f0/0xa20 net/sctp/socket.c:8617 Call Trace: <TASK> __sys_listen_socket net/socket.c:1883 [inline] __sys_listen+0x1b7/0x230 net/socket.c:1894 __do_sys_listen net/socket.c:1902 [inline]

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: avoid to add interface to list twice when SER If SER L2 occurs during the WoWLAN resume flow, the add interface flow is triggered by ieee80211_reconfig(). However, due to rtw89_wow_resume() return failure, it will cause the add interface flow to be executed again, resulting in a double add list and causing a kernel panic. Therefore, we have added a check to prevent double adding of the list. list_add double add: new=ffff99d6992e2010, prev=ffff99d6992e2010, next=ffff99d695302628. ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:37! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W O 6.6.30-02659-gc18865c4dfbd #1 770df2933251a0e3c888ba69d1053a817a6376a7 Hardware name: HP Grunt/Grunt, BIOS Google_Grunt.11031.169.0 06/24/2021 Workqueue: events_freezable ieee80211_restart_work [mac80211] RIP: 0010:__list_add_valid_or_report+0x5e/0xb0 Code: c7 74 18 48 39 ce 74 13 b0 01 59 5a 5e 5f 41 58 41 59 41 5a 5d e9 e2 d6 03 00 cc 48 c7 c7 8d 4f 17 83 48 89 c2 e8 02 c0 00 00 <0f> 0b 48 c7 c7 aa 8c 1c 83 e8 f4 bf 00 00 0f 0b 48 c7 c7 c8 bc 12 RSP: 0018:ffffa91b8007bc50 EFLAGS: 00010246 RAX: 0000000000000058 RBX: ffff99d6992e0900 RCX: a014d76c70ef3900 RDX: ffffa91b8007bae8 RSI: 00000000ffffdfff RDI: 0000000000000001 RBP: ffffa91b8007bc88 R08: 0000000000000000 R09: ffffa91b8007bae0 R10: 00000000ffffdfff R11: ffffffff83a79800 R12: ffff99d695302060 R13: ffff99d695300900 R14: ffff99d6992e1be0 R15: ffff99d6992e2010 FS: 0000000000000000(0000) GS:ffff99d6aac00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000078fbdba43480 CR3: 000000010e464000 CR4: 00000000001506f0 Call Trace: <TASK> ? __die_body+0x1f/0x70 ? die+0x3d/0x60 ? do_trap+0xa4/0x110 ? __list_add_valid_or_report+0x5e/0xb0 ? do_error_trap+0x6d/0x90 ? __list_add_valid_or_report+0x5e/0xb0 ? handle_invalid_op+0x30/0x40 ? __list_add_valid_or_report+0x5e/0xb0 ? exc_invalid_op+0x3c/0x50 ? asm_exc_invalid_op+0x16/0x20 ? __list_add_valid_or_report+0x5e/0xb0 rtw89_ops_add_interface+0x309/0x310 [rtw89_core 7c32b1ee6854761c0321027c8a58c5160e41f48f] drv_add_interface+0x5c/0x130 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc] ieee80211_reconfig+0x241/0x13d0 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc] ? finish_wait+0x3e/0x90 ? synchronize_rcu_expedited+0x174/0x260 ? sync_rcu_exp_done_unlocked+0x50/0x50 ? wake_bit_function+0x40/0x40 ieee80211_restart_work+0xf0/0x140 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc] process_scheduled_works+0x1e5/0x480 worker_thread+0xea/0x1e0 kthread+0xdb/0x110 ? move_linked_works+0x90/0x90 ? kthread_associate_blkcg+0xa0/0xa0 ret_from_fork+0x3b/0x50 ? kthread_associate_blkcg+0xa0/0xa0 ret_from_fork_asm+0x11/0x20 </TASK> Modules linked in: dm_integrity async_xor xor async_tx lz4 lz4_compress zstd zstd_compress zram zsmalloc rfcomm cmac uinput algif_hash algif_skcipher af_alg btusb btrtl iio_trig_hrtimer industrialio_sw_trigger btmtk industrialio_configfs btbcm btintel uvcvideo videobuf2_vmalloc iio_trig_sysfs videobuf2_memops videobuf2_v4l2 videobuf2_common uvc snd_hda_codec_hdmi veth snd_hda_intel snd_intel_dspcfg acpi_als snd_hda_codec industrialio_triggered_buffer kfifo_buf snd_hwdep industrialio i2c_piix4 snd_hda_core designware_i2s ip6table_nat snd_soc_max98357a xt_MASQUERADE xt_cgroup snd_soc_acp_rt5682_mach fuse rtw89_8922ae(O) rtw89_8922a(O) rtw89_pci(O) rtw89_core(O) 8021q mac80211(O) bluetooth ecdh_generic ecc cfg80211 r8152 mii joydev gsmi: Log Shutdown Reason 0x03 ---[ end trace 0000000000000000 ]---

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k_htc: Use __skb_set_length() for resetting urb before resubmit Syzbot points out that skb_trim() has a sanity check on the existing length of the skb, which can be uninitialised in some error paths. The intent here is clearly just to reset the length to zero before resubmitting, so switch to calling __skb_set_length(skb, 0) directly. In addition, __skb_set_length() already contains a call to skb_reset_tail_pointer(), so remove the redundant call. The syzbot report came from ath9k_hif_usb_reg_in_cb(), but there's a similar usage of skb_trim() in ath9k_hif_usb_rx_cb(), change both while we're at it.

0.0% 2024-10-21
5.5 MEDIUM

In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: Set correct chandef when starting CAC When starting CAC in a mode other than AP mode, it return a "WARNING: CPU: 0 PID: 63 at cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211]" caused by the chandef.chan being null at the end of CAC. Solution: Ensure the channel definition is set for the different modes when starting CAC to avoid getting a NULL 'chan' at the end of CAC. Call Trace: ? show_regs.part.0+0x14/0x16 ? __warn+0x67/0xc0 ? cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211] ? report_bug+0xa7/0x130 ? exc_overflow+0x30/0x30 ? handle_bug+0x27/0x50 ? exc_invalid_op+0x18/0x60 ? handle_exception+0xf6/0xf6 ? exc_overflow+0x30/0x30 ? cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211] ? exc_overflow+0x30/0x30 ? cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211] ? regulatory_propagate_dfs_state.cold+0x1b/0x4c [cfg80211] ? cfg80211_propagate_cac_done_wk+0x1a/0x30 [cfg80211] ? process_one_work+0x165/0x280 ? worker_thread+0x120/0x3f0 ? kthread+0xc2/0xf0 ? process_one_work+0x280/0x280 ? kthread_complete_and_exit+0x20/0x20 ? ret_from_fork+0x19/0x24 [shorten subject, remove OCB, reorder cases to match previous list]

0.0% 2024-10-21
7.8 HIGH

In the Linux kernel, the following vulnerability has been resolved: net/xen-netback: prevent UAF in xenvif_flush_hash() During the list_for_each_entry_rcu iteration call of xenvif_flush_hash, kfree_rcu does not exist inside the rcu read critical section, so if kfree_rcu is called when the rcu grace period ends during the iteration, UAF occurs when accessing head->next after the entry becomes free. Therefore, to solve this, you need to change it to list_for_each_entry_safe.

0.0% 2024-10-21