In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: mcc: prevent shift wrapping in rtw89_core_mlsr_switch()
The "link_id" value comes from the user via debugfs. If it's larger
than BITS_PER_LONG then that would result in shift wrapping and
potentially an out of bounds access later. In fact, we can limit it
to IEEE80211_MLD_MAX_NUM_LINKS (15).
Fortunately, only root can write to debugfs files so the security
impact is minimal.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: Fix error code in iwl_op_mode_dvm_start()
Preserve the error code if iwl_setup_deferred_work() fails. The current
code returns ERR_PTR(0) (which is NULL) on this path. I believe the
missing error code potentially leads to a use after free involving
debugfs.
In the Linux kernel, the following vulnerability has been resolved:
rv: Use strings in da monitors tracepoints
Using DA monitors tracepoints with KASAN enabled triggers the following
warning:
BUG: KASAN: global-out-of-bounds in do_trace_event_raw_event_event_da_monitor+0xd6/0x1a0
Read of size 32 at addr ffffffffaada8980 by task ...
Call Trace:
<TASK>
[...]
do_trace_event_raw_event_event_da_monitor+0xd6/0x1a0
? __pfx_do_trace_event_raw_event_event_da_monitor+0x10/0x10
? trace_event_sncid+0x83/0x200
trace_event_sncid+0x163/0x200
[...]
The buggy address belongs to the variable:
automaton_snep+0x4e0/0x5e0
This is caused by the tracepoints reading 32 bytes __array instead of
__string from the automata definition. Such strings are literals and
reading 32 bytes ends up in out of bound memory accesses (e.g. the next
automaton's data in this case).
The error is harmless as, while printing the string, we stop at the null
terminator, but it should still be fixed.
Use the __string facilities while defining the tracepoints to avoid
reading out of bound memory.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix UAF of f2fs_inode_info in f2fs_free_dic
The decompress_io_ctx may be released asynchronously after
I/O completion. If this file is deleted immediately after read,
and the kworker of processing post_read_wq has not been executed yet
due to high workloads, It is possible that the inode(f2fs_inode_info)
is evicted and freed before it is used f2fs_free_dic.
The UAF case as below:
Thread A Thread B
- f2fs_decompress_end_io
- f2fs_put_dic
- queue_work
add free_dic work to post_read_wq
- do_unlink
- iput
- evict
- call_rcu
This file is deleted after read.
Thread C kworker to process post_read_wq
- rcu_do_batch
- f2fs_free_inode
- kmem_cache_free
inode is freed by rcu
- process_scheduled_works
- f2fs_late_free_dic
- f2fs_free_dic
- f2fs_release_decomp_mem
read (dic->inode)->i_compress_algorithm
This patch store compress_algorithm and sbi in dic to avoid inode UAF.
In addition, the previous solution is deprecated in [1] may cause system hang.
[1] https://lore.kernel.org/all/c36ab955-c8db-4a8b-a9d0-f07b5f426c3f@kernel.org
In the Linux kernel, the following vulnerability has been resolved:
zloop: fix KASAN use-after-free of tag set
When a zoned loop device, or zloop device, is removed, KASAN enabled
kernel reports "BUG KASAN use-after-free" in blk_mq_free_tag_set(). The
BUG happens because zloop_ctl_remove() calls put_disk(), which invokes
zloop_free_disk(). The zloop_free_disk() frees the memory allocated for
the zlo pointer. However, after the memory is freed, zloop_ctl_remove()
calls blk_mq_free_tag_set(&zlo->tag_set), which accesses the freed zlo.
Hence the KASAN use-after-free.
zloop_ctl_remove()
put_disk(zlo->disk)
put_device()
kobject_put()
...
zloop_free_disk()
kvfree(zlo)
blk_mq_free_tag_set(&zlo->tag_set)
To avoid the BUG, move the call to blk_mq_free_tag_set(&zlo->tag_set)
from zloop_ctl_remove() into zloop_free_disk(). This ensures that
the tag_set is freed before the call to kvfree(zlo).
In the Linux kernel, the following vulnerability has been resolved:
tls: handle data disappearing from under the TLS ULP
TLS expects that it owns the receive queue of the TCP socket.
This cannot be guaranteed in case the reader of the TCP socket
entered before the TLS ULP was installed, or uses some non-standard
read API (eg. zerocopy ones). Replace the WARN_ON() and a buggy
early exit (which leaves anchor pointing to a freed skb) with real
error handling. Wipe the parsing state and tell the reader to retry.
We already reload the anchor every time we (re)acquire the socket lock,
so the only condition we need to avoid is an out of bounds read
(not having enough bytes in the socket for previously parsed record len).
If some data was read from under TLS but there's enough in the queue
we'll reload and decrypt what is most likely not a valid TLS record.
Leading to some undefined behavior from TLS perspective (corrupting
a stream? missing an alert? missing an attack?) but no kernel crash
should take place.
WebITR developed by Uniong has a SQL Injection vulnerability, allowing unauthenticated remote attackers to inject arbitrary SQL commands to read database contents.
A security flaw has been discovered in TOTOLINK A720R 4.1.5cu.630_B20250509. This issue affects the function setParentalRules of the file /cgi-bin/cstecgi.cgi. Performing manipulation of the argument desc results in buffer overflow. The attack is possible to be carried out remotely. The exploit has been released to the public and may be exploited.
vLLM is an inference and serving engine for large language models (LLMs). From 0.1.0 to before 0.10.1.1, a Denial of Service (DoS) vulnerability can be triggered by sending a single HTTP GET request with an extremely large header to an HTTP endpoint. This results in server memory exhaustion, potentially leading to a crash or unresponsiveness. The attack does not require authentication, making it exploitable by any remote user. This vulnerability is fixed in 0.10.1.1.
Critical XXE in Apache Tika (tika-parser-pdf-module) in Apache Tika 1.13 through and including 3.2.1 on all platforms allows an attacker to carry out XML External Entity injection via a crafted XFA file inside of a PDF. An attacker may be able to read sensitive data or trigger malicious requests to internal resources or third-party servers. Note that the tika-parser-pdf-module is used as a dependency in several Tika packages including at least: tika-parsers-standard-modules, tika-parsers-standard-package, tika-app, tika-grpc and tika-server-standard.
Users are recommended to upgrade to version 3.2.2, which fixes this issue.
Cross Site Request Forgery (CSRF) vulnerability in old-peanut Open-Shop (aka old-peanut/wechat_applet__open_source) thru 1.0.0 allows attackers to gain sensitive information via crafted HTTP Post message.
A stack-based buffer overflow vulnerability exists in the Cloud API functionality of Tenda AC6 V5.0 V02.03.01.110. A specially crafted HTTP response can lead to arbitrary code execution. An attacker can send an HTTP response to trigger this vulnerability.
A firmware update vulnerability exists in the Firmware Signature Validation functionality of Tenda AC6 V5.0 V02.03.01.110. A specially crafted malicious file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
A denial of service vulnerability exists in the HTTP Header Parsing functionality of Tenda AC6 V5.0 V02.03.01.110. A specially crafted series of HTTP requests can lead to a reboot. An attacker can send multiple network packets to trigger this vulnerability.
An information disclosure vulnerability exists in the /goform/getproductInfo functionality of Tenda AC6 V5.0 V02.03.01.110. Specially crafted network packets can lead to a disclosure of sensitive information. An attacker can send packets to trigger this vulnerability.
An unsafe default authentication vulnerability exists in the Initial Setup Authentication functionality of Tenda AC6 V5.0 V02.03.01.110. A specially crafted network request can lead to arbitrary code execution. An attacker can browse to the device to trigger this vulnerability.
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in ThimPress WP Pipes allows Reflected XSS. This issue affects WP Pipes: from n/a through 1.4.3.
Memory safety bugs present in Firefox ESR 115.26, Firefox ESR 128.13, Thunderbird ESR 128.13, Firefox ESR 140.1, Thunderbird ESR 140.1, Firefox 141 and Thunderbird 141. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 142, Firefox ESR < 115.27, Firefox ESR < 128.14, Firefox ESR < 140.2, Thunderbird < 142, Thunderbird < 128.14, and Thunderbird < 140.2.
Denial-of-service due to out-of-memory in the Graphics: WebRender component. This vulnerability affects Firefox < 142, Firefox ESR < 140.2, Thunderbird < 142, and Thunderbird < 140.2.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: Fix possible OOB access in mt7996_tx()
Fis possible Out-Of-Boundary access in mt7996_tx routine if link_id is
set to IEEE80211_LINK_UNSPECIFIED
In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix UAF in panthor_gem_create_with_handle() debugfs code
The object is potentially already gone after the drm_gem_object_put().
In general the object should be fully constructed before calling
drm_gem_handle_create(), except the debugfs tracking uses a separate
lock and list and separate flag to denotate whether the object is
actually initialized.
Since I'm touching this all anyway simplify this by only adding the
object to the debugfs when it's ready for that, which allows us to
delete that separate flag. panthor_gem_debugfs_bo_rm() already checks
whether we've actually been added to the list or this is some error
path cleanup.
v2: Fix build issues for !CONFIG_DEBUGFS (AdriΓ‘n)
v3: Add linebreak and remove outdated comment (Liviu)
In the Linux kernel, the following vulnerability has been resolved:
xen: fix UAF in dmabuf_exp_from_pages()
[dma_buf_fd() fixes; no preferences regarding the tree it goes through -
up to xen folks]
As soon as we'd inserted a file reference into descriptor table, another
thread could close it. That's fine for the case when all we are doing is
returning that descriptor to userland (it's a race, but it's a userland
race and there's nothing the kernel can do about it). However, if we
follow fd_install() with any kind of access to objects that would be
destroyed on close (be it the struct file itself or anything destroyed
by its ->release()), we have a UAF.
dma_buf_fd() is a combination of reserving a descriptor and fd_install().
gntdev dmabuf_exp_from_pages() calls it and then proceeds to access the
objects destroyed on close - starting with gntdev_dmabuf itself.
Fix that by doing reserving descriptor before anything else and do
fd_install() only when everything had been set up.
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix UAF on sva unbind with pending IOPFs
Commit 17fce9d2336d ("iommu/vt-d: Put iopf enablement in domain attach
path") disables IOPF on device by removing the device from its IOMMU's
IOPF queue when the last IOPF-capable domain is detached from the device.
Unfortunately, it did this in a wrong place where there are still pending
IOPFs. As a result, a use-after-free error is potentially triggered and
eventually a kernel panic with a kernel trace similar to the following:
refcount_t: underflow; use-after-free.
WARNING: CPU: 3 PID: 313 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0
Workqueue: iopf_queue/dmar0-iopfq iommu_sva_handle_iopf
Call Trace:
<TASK>
iopf_free_group+0xe/0x20
process_one_work+0x197/0x3d0
worker_thread+0x23a/0x350
? rescuer_thread+0x4a0/0x4a0
kthread+0xf8/0x230
? finish_task_switch.isra.0+0x81/0x260
? kthreads_online_cpu+0x110/0x110
? kthreads_online_cpu+0x110/0x110
ret_from_fork+0x13b/0x170
? kthreads_online_cpu+0x110/0x110
ret_from_fork_asm+0x11/0x20
</TASK>
---[ end trace 0000000000000000 ]---
The intel_pasid_tear_down_entry() function is responsible for blocking
hardware from generating new page faults and flushing all in-flight
ones. Therefore, moving iopf_for_domain_remove() after this function
should resolve this.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_devcd_dump: fix out-of-bounds via dev_coredumpv
Currently both dev_coredumpv and skb_put_data in hci_devcd_dump use
hdev->dump.head. However, dev_coredumpv can free the buffer. From
dev_coredumpm_timeout documentation, which is used by dev_coredumpv:
> Creates a new device coredump for the given device. If a previous one hasn't
> been read yet, the new coredump is discarded. The data lifetime is determined
> by the device coredump framework and when it is no longer needed the @free
> function will be called to free the data.
If the data has not been read by the userspace yet, dev_coredumpv will
discard new buffer, freeing hdev->dump.head. This leads to
vmalloc-out-of-bounds error when skb_put_data tries to access
hdev->dump.head.
A crash report from syzbot illustrates this:
==================================================================
BUG: KASAN: vmalloc-out-of-bounds in skb_put_data
include/linux/skbuff.h:2752 [inline]
BUG: KASAN: vmalloc-out-of-bounds in hci_devcd_dump+0x142/0x240
net/bluetooth/coredump.c:258
Read of size 140 at addr ffffc90004ed5000 by task kworker/u9:2/5844
CPU: 1 UID: 0 PID: 5844 Comm: kworker/u9:2 Not tainted
6.14.0-syzkaller-10892-g4e82c87058f4 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 02/12/2025
Workqueue: hci0 hci_devcd_timeout
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
__asan_memcpy+0x23/0x60 mm/kasan/shadow.c:105
skb_put_data include/linux/skbuff.h:2752 [inline]
hci_devcd_dump+0x142/0x240 net/bluetooth/coredump.c:258
hci_devcd_timeout+0xb5/0x2e0 net/bluetooth/coredump.c:413
process_one_work+0x9cc/0x1b70 kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3319 [inline]
worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400
kthread+0x3c2/0x780 kernel/kthread.c:464
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
The buggy address ffffc90004ed5000 belongs to a vmalloc virtual mapping
Memory state around the buggy address:
ffffc90004ed4f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90004ed4f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
>ffffc90004ed5000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc90004ed5080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90004ed5100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
==================================================================
To avoid this issue, reorder dev_coredumpv to be called after
skb_put_data that does not free the data.
In the Linux kernel, the following vulnerability has been resolved:
staging: media: atomisp: Fix stack buffer overflow in gmin_get_var_int()
When gmin_get_config_var() calls efi.get_variable() and the EFI variable
is larger than the expected buffer size, two behaviors combine to create
a stack buffer overflow:
1. gmin_get_config_var() does not return the proper error code when
efi.get_variable() fails. It returns the stale 'ret' value from
earlier operations instead of indicating the EFI failure.
2. When efi.get_variable() returns EFI_BUFFER_TOO_SMALL, it updates
*out_len to the required buffer size but writes no data to the output
buffer. However, due to bug #1, gmin_get_var_int() believes the call
succeeded.
The caller gmin_get_var_int() then performs:
- Allocates val[CFG_VAR_NAME_MAX + 1] (65 bytes) on stack
- Calls gmin_get_config_var(dev, is_gmin, var, val, &len) with len=64
- If EFI variable is >64 bytes, efi.get_variable() sets len=required_size
- Due to bug #1, thinks call succeeded with len=required_size
- Executes val[len] = 0, writing past end of 65-byte stack buffer
This creates a stack buffer overflow when EFI variables are larger than
64 bytes. Since EFI variables can be controlled by firmware or system
configuration, this could potentially be exploited for code execution.
Fix the bug by returning proper error codes from gmin_get_config_var()
based on EFI status instead of stale 'ret' value.
The gmin_get_var_int() function is called during device initialization
for camera sensor configuration on Intel Bay Trail and Cherry Trail
platforms using the atomisp camera stack.
In the Linux kernel, the following vulnerability has been resolved:
padata: Fix pd UAF once and for all
There is a race condition/UAF in padata_reorder that goes back
to the initial commit. A reference count is taken at the start
of the process in padata_do_parallel, and released at the end in
padata_serial_worker.
This reference count is (and only is) required for padata_replace
to function correctly. If padata_replace is never called then
there is no issue.
In the function padata_reorder which serves as the core of padata,
as soon as padata is added to queue->serial.list, and the associated
spin lock released, that padata may be processed and the reference
count on pd would go away.
Fix this by getting the next padata before the squeue->serial lock
is released.
In order to make this possible, simplify padata_reorder by only
calling it once the next padata arrives.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix double destruction of rsv_qp
rsv_qp may be double destroyed in error flow, first in free_mr_init(),
and then in hns_roce_exit(). Fix it by moving the free_mr_init() call
into hns_roce_v2_init().
list_del corruption, ffff589732eb9b50->next is LIST_POISON1 (dead000000000100)
WARNING: CPU: 8 PID: 1047115 at lib/list_debug.c:53 __list_del_entry_valid+0x148/0x240
...
Call trace:
__list_del_entry_valid+0x148/0x240
hns_roce_qp_remove+0x4c/0x3f0 [hns_roce_hw_v2]
hns_roce_v2_destroy_qp_common+0x1dc/0x5f4 [hns_roce_hw_v2]
hns_roce_v2_destroy_qp+0x22c/0x46c [hns_roce_hw_v2]
free_mr_exit+0x6c/0x120 [hns_roce_hw_v2]
hns_roce_v2_exit+0x170/0x200 [hns_roce_hw_v2]
hns_roce_exit+0x118/0x350 [hns_roce_hw_v2]
__hns_roce_hw_v2_init_instance+0x1c8/0x304 [hns_roce_hw_v2]
hns_roce_hw_v2_reset_notify_init+0x170/0x21c [hns_roce_hw_v2]
hns_roce_hw_v2_reset_notify+0x6c/0x190 [hns_roce_hw_v2]
hclge_notify_roce_client+0x6c/0x160 [hclge]
hclge_reset_rebuild+0x150/0x5c0 [hclge]
hclge_reset+0x10c/0x140 [hclge]
hclge_reset_subtask+0x80/0x104 [hclge]
hclge_reset_service_task+0x168/0x3ac [hclge]
hclge_service_task+0x50/0x100 [hclge]
process_one_work+0x250/0x9a0
worker_thread+0x324/0x990
kthread+0x190/0x210
ret_from_fork+0x10/0x18
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix inode use after free in ext4_end_io_rsv_work()
In ext4_io_end_defer_completion(), check if io_end->list_vec is empty to
avoid adding an io_end that requires no conversion to the
i_rsv_conversion_list, which in turn prevents starting an unnecessary
worker. An ext4_emergency_state() check is also added to avoid attempting
to abort the journal in an emergency state.
Additionally, ext4_put_io_end_defer() is refactored to call
ext4_io_end_defer_completion() directly instead of being open-coded.
This also prevents starting an unnecessary worker when EXT4_IO_END_FAILED
is set but data_err=abort is not enabled.
This ensures that the check in ext4_put_io_end_defer() is consistent with
the check in ext4_end_bio(). Otherwise, we might add an io_end to the
i_rsv_conversion_list and then call ext4_finish_bio(), after which the
inode could be freed before ext4_end_io_rsv_work() is called, triggering
a use-after-free issue.
In the Linux kernel, the following vulnerability has been resolved:
eth: fbnic: unlink NAPIs from queues on error to open
CI hit a UaF in fbnic in the AF_XDP portion of the queues.py test.
The UaF is in the __sk_mark_napi_id_once() call in xsk_bind(),
NAPI has been freed. Looks like the device failed to open earlier,
and we lack clearing the NAPI pointer from the queue.
In the Linux kernel, the following vulnerability has been resolved:
net/sched: mqprio: fix stack out-of-bounds write in tc entry parsing
TCA_MQPRIO_TC_ENTRY_INDEX is validated using
NLA_POLICY_MAX(NLA_U32, TC_QOPT_MAX_QUEUE), which allows the value
TC_QOPT_MAX_QUEUE (16). This leads to a 4-byte out-of-bounds stack
write in the fp[] array, which only has room for 16 elements (0β15).
Fix this by changing the policy to allow only up to TC_QOPT_MAX_QUEUE - 1.
In the Linux kernel, the following vulnerability has been resolved:
sunrpc: fix handling of server side tls alerts
Scott Mayhew discovered a security exploit in NFS over TLS in
tls_alert_recv() due to its assumption it can read data from
the msg iterator's kvec..
kTLS implementation splits TLS non-data record payload between
the control message buffer (which includes the type such as TLS
aler or TLS cipher change) and the rest of the payload (say TLS
alert's level/description) which goes into the msg payload buffer.
This patch proposes to rework how control messages are setup and
used by sock_recvmsg().
If no control message structure is setup, kTLS layer will read and
process TLS data record types. As soon as it encounters a TLS control
message, it would return an error. At that point, NFS can setup a
kvec backed msg buffer and read in the control message such as a
TLS alert. Msg iterator can advance the kvec pointer as a part of
the copy process thus we need to revert the iterator before calling
into the tls_alert_recv.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix Preauh_HashValue race condition
If client send multiple session setup requests to ksmbd,
Preauh_HashValue race condition could happen.
There is no need to free sess->Preauh_HashValue at session setup phase.
It can be freed together with session at connection termination phase.
In the Linux kernel, the following vulnerability has been resolved:
HID: core: Harden s32ton() against conversion to 0 bits
Testing by the syzbot fuzzer showed that the HID core gets a
shift-out-of-bounds exception when it tries to convert a 32-bit
quantity to a 0-bit quantity. Ideally this should never occur, but
there are buggy devices and some might have a report field with size
set to zero; we shouldn't reject the report or the device just because
of that.
Instead, harden the s32ton() routine so that it returns a reasonable
result instead of crashing when it is called with the number of bits
set to 0 -- the same as what snto32() does.
In the Linux kernel, the following vulnerability has been resolved:
mm: fix a UAF when vma->mm is freed after vma->vm_refcnt got dropped
By inducing delays in the right places, Jann Horn created a reproducer for
a hard to hit UAF issue that became possible after VMAs were allowed to be
recycled by adding SLAB_TYPESAFE_BY_RCU to their cache.
Race description is borrowed from Jann's discovery report:
lock_vma_under_rcu() looks up a VMA locklessly with mas_walk() under
rcu_read_lock(). At that point, the VMA may be concurrently freed, and it
can be recycled by another process. vma_start_read() then increments the
vma->vm_refcnt (if it is in an acceptable range), and if this succeeds,
vma_start_read() can return a recycled VMA.
In this scenario where the VMA has been recycled, lock_vma_under_rcu()
will then detect the mismatching ->vm_mm pointer and drop the VMA through
vma_end_read(), which calls vma_refcount_put(). vma_refcount_put() drops
the refcount and then calls rcuwait_wake_up() using a copy of vma->vm_mm.
This is wrong: It implicitly assumes that the caller is keeping the VMA's
mm alive, but in this scenario the caller has no relation to the VMA's mm,
so the rcuwait_wake_up() can cause UAF.
The diagram depicting the race:
T1 T2 T3
== == ==
lock_vma_under_rcu
mas_walk
<VMA gets removed from mm>
mmap
<the same VMA is reallocated>
vma_start_read
__refcount_inc_not_zero_limited_acquire
munmap
__vma_enter_locked
refcount_add_not_zero
vma_end_read
vma_refcount_put
__refcount_dec_and_test
rcuwait_wait_event
<finish operation>
rcuwait_wake_up [UAF]
Note that rcuwait_wait_event() in T3 does not block because refcount was
already dropped by T1. At this point T3 can exit and free the mm causing
UAF in T1.
To avoid this we move vma->vm_mm verification into vma_start_read() and
grab vma->vm_mm to stabilize it before vma_refcount_put() operation.
[surenb@google.com: v3]
The Sante PACS Server allows a remote attacker to crash the main thread by sending a crafted HL7 message, causing a denial-of-service condition. The application would require a manual restart and no authentication is required.
In Ashlar-Vellum Cobalt, Xenon, Argon, Lithium, and Cobalt Share versions prior to 12.6.1204.204, the affected applications lack proper validation of user-supplied data when parsing XE files. This could lead to a heap-based buffer overflow. An attacker could leverage this vulnerability to execute arbitrary code in the context of the current process.
In Ashlar-Vellum Cobalt, Xenon, Argon, Lithium, and Cobalt Share versions prior to 12.6.1204.204, the affected applications lack proper validation of user-supplied data when parsing VC6 files. This could lead to a heap-based buffer overflow. An attacker could leverage this vulnerability to execute arbitrary code in the context of the current process.
In Ashlar-Vellum Cobalt, Xenon, Argon, Lithium, and Cobalt Share versions prior to 12.6.1204.204, the affected applications lack proper validation of user-supplied data when parsing CO files. This could lead to an out-of-bounds write. An attacker could leverage this vulnerability to execute arbitrary code in the context of the current process.
In Ashlar-Vellum Cobalt, Xenon, Argon, Lithium, and Cobalt Share versions prior to 12.6.1204.204, the affected applications lack proper validation of user-supplied data when parsing AR files. This could lead to an out-of-bounds read. An attacker could leverage this vulnerability to execute arbitrary code in the context of the current process.
** UNSUPPORTED WHEN ASSIGNED ** Improper Neutralization of Expression/Command Delimiters vulnerability in Apache Commons OGNL.
This issue affects Apache Commons OGNL: all versions.
When using the API Ognl.getValueβ, the OGNL engine parses and evaluates the provided expression with powerful capabilities, including accessing and invoking related methods,
etc. Although OgnlRuntime attempts to restrict certain dangerous classes and methods (such as java.lang.Runtime) through a blocklist, these restrictions are not comprehensive.
Attackers may be able to bypass the restrictions by leveraging class objects that are not covered by the blocklist and potentially achieve arbitrary code execution.
As this project is retired, we do not plan to release a version that fixes this issue. Users are recommended to find an alternative or restrict access to the instance to trusted users.
NOTE: This vulnerability only affects products that are no longer supported by the maintainer.
A security issue was discovered in the Kubernetes Image Builder where default credentials are enabled during the Windows image build process when using the Nutanix or VMware OVA providers. These credentials, which allow root access, are disabled at the conclusion of the build. Kubernetes clusters are only affected if their nodes use VM images created via the Image Builder project and the vulnerability was exploited during the build process, which requires an attacker to access the build VM and modify the image while the build is in progress.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix out of bounds read in smb2_sess_setup
ksmbd does not consider the case of that smb2 session setup is
in compound request. If this is the second payload of the compound,
OOB read issue occurs while processing the first payload in
the smb2_sess_setup().
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix out-of-bound read in smb2_write
ksmbd_smb2_check_message doesn't validate hdr->NextCommand. If
->NextCommand is bigger than Offset + Length of smb2 write, It will
allow oversized smb2 write length. It will cause OOB read in smb2_write.
In the Linux kernel, the following vulnerability has been resolved:
net: airoha: fix potential use-after-free in airoha_npu_get()
np->name was being used after calling of_node_put(np), which
releases the node and can lead to a use-after-free bug.
Previously, of_node_put(np) was called unconditionally after
of_find_device_by_node(np), which could result in a use-after-free if
pdev is NULL.
This patch moves of_node_put(np) after the error check to ensure
the node is only released after both the error and success cases
are handled appropriately, preventing potential resource issues.