CVE Database

Search and browse vulnerability records from NVD

Showing 50 of 28155 CVEs

CVE ID Severity Description EPSS Published
4.1 MEDIUM

Medtronic CareLink Network allows a local attacker with access to log files on an internal API server to view plaintext passwords from errors logged under certain circumstances. This issue affects CareLink Network: before December 4, 2025.

0.0% 2025-12-04
8.1 HIGH

Medtronic CareLink Network allows an unauthenticated remote attacker to perform a brute force attack on an API endpoint that could be used to determine a valid password under certain circumstances. This issue affects CareLink Network: before December 4, 2025.

0.1% 2025-12-04
5.3 MEDIUM

Medtronic CareLink Network allows an unauthenticated remote attacker to initiate a request for security questions to an API endpoint that could be used to determine a valid user account. This issue affects CareLink Network: before December 4, 2025.

0.0% 2025-12-04
7.5 HIGH

There is a relative path traversal vulnerability in the NI System Web Server that may result in information disclosure.  Successful exploitation requires an attacker to send a specially crafted request to the NI System Web Server, allowing the attacker to read arbitrary files.  This vulnerability existed in the NI System Web Server 2012 and prior versions.  It was fixed in 2013.

0.1% 2025-12-04
7.5 HIGH

auth0/node-jws is a JSON Web Signature implementation for Node.js. In versions 3.2.2 and earlier and version 4.0.0, auth0/node-jws has an improper signature verification vulnerability when using the HS256 algorithm under specific conditions. Applications are affected when they use the jws.createVerify() function for HMAC algorithms and use user-provided data from the JSON Web Signature protected header or payload in HMAC secret lookup routines, which can allow attackers to bypass signature verification. This issue has been patched in versions 3.2.3 and 4.0.1.

0.0% 2025-12-04
7.5 HIGH

A denial-of-service vulnerability exists in github.com/sirupsen/logrus when using Entry.Writer() to log a single-line payload larger than 64KB without newline characters. Due to limitations in the internal bufio.Scanner, the read fails with "token too long" and the writer pipe is closed, leaving Writer() unusable and causing application unavailability (DoS). This affects versions < 1.8.3, 1.9.0, and 1.9.2. The issue is fixed in 1.8.3, 1.9.1, and 1.9.3+, where the input is chunked and the writer continues to function even if an error is logged.

0.0% 2025-12-04
9.8 CRITICAL

Waveshare RS232/485 TO WIFI ETH (B) Serial to Ethernet/Wi-Fi Gateway Firmware V3.1.1.0: HW 4.3.2.1: Webpage V7.04T.07.002880.0301 allows attackers to set the Administrator password and username as blank values, allowing attackers to bypass authentication.

0.1% 2025-12-04
5.7 MEDIUM

Waveshare RS232/485 TO WIFI ETH (B) Serial to Ethernet/Wi-Fi Gateway Firmware V3.1.1.0: HW 4.3.2.1: Webpage V7.04T.07.002880.0301 was discovered to render the Administrator password in plaintext.

0.0% 2025-12-04
6.4 MEDIUM

Cross-site scripting (XSS) vulnerability in a reachable files_pdfviewer example directory in Nextcloud with versions before 22.2.10.33, 23.0.12.29, 24.0.12.28, 25.0.13.23, 26.0.13.20, 27.1.11.20, 28.0.14.11, 29.0.16.8, 30.0.17, 31.0.10, and 32.0.1 allows attackers to execute arbitrary JavaScript in the context of a user's browser via a crafted PDF file to viewer.html. This issue is related to CVE-2024-4367, but the root cause of this Nextcloud issue is that the product exposes executable example code on a same-origin basis.

0.0% 2025-12-04
5.4 MEDIUM

A security vulnerability has been detected in macrozheng mall-swarm up to 1.0.3. Affected is the function delete of the file /member/readHistory/delete. Such manipulation of the argument ids leads to improper authorization. The attack can be executed remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way.

0.1% 2025-12-04
8.8 HIGH

A weakness has been identified in H3C Magic B0 up to 100R002. This impacts the function EditWlanMacList of the file /goform/aspForm. This manipulation of the argument param causes buffer overflow. Remote exploitation of the attack is possible. The exploit has been made available to the public and could be exploited. The vendor was contacted early about this disclosure but did not respond in any way.

0.1% 2025-12-04
2.4 LOW

A vulnerability was identified in JIZHICMS up to 2.5.5. The impacted element is an unknown function of the file /index.php/admins/Comment/addcomment.html of the component Comment Handler. The manipulation of the argument body leads to cross site scripting. The attack may be initiated remotely. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way.

0.0% 2025-12-04
N/A

Due to a regression introduced in version 3.83.0, a security header is no longer applied to certain user-uploaded content served from repositories. This may allow an authenticated attacker with repository upload privileges to exploit a stored cross-site scripting (XSS) vulnerability with user context.

0.1% 2025-12-04
N/A

A vulnerability exists in PX Enterprise whereby sensitive information may be logged under specific conditions.

0.0% 2025-12-04
7.5 HIGH

A lack of Management Frame Protection in Waveshare RS232/485 TO WIFI ETH (B) Serial to Ethernet/Wi-Fi Gateway Firmware V3.1.1.0: HW 4.3.2.1: Webpage V7.04T.07.002880.0301 allows attackers to execute de-authentication attacks, allowing crafted deauthentication and disassociation frames to be broadcast without authentication or encryption.

0.1% 2025-12-04
4.7 MEDIUM

A vulnerability was determined in JIZHICMS up to 2.5.5. The affected element is the function deleteAll/findAll/delete of the file /index.php/admins/Comment/deleteAll.html of the component Batch Delete Comments. Executing manipulation can lead to sql injection. The attack can be launched remotely. The exploit has been publicly disclosed and may be utilized. The vendor was contacted early about this disclosure but did not respond in any way.

0.0% 2025-12-04
4.7 MEDIUM

A vulnerability was found in JIZHICMS up to 2.5.5. Impacted is the function commentlist of the file /index.php/admins/Comment/addcomment.html of the component Add Display Name Field. Performing manipulation of the argument aid/tid results in sql injection. The attack can be initiated remotely. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way.

0.0% 2025-12-04
8.4 HIGH

Critical XXE in Apache Tika tika-core (1.13-3.2.1), tika-pdf-module (2.0.0-3.2.1) and tika-parsers (1.13-1.28.5) modules on all platforms allows an attacker to carry out XML External Entity injection via a crafted XFA file inside of a PDF. This CVE covers the same vulnerability as in CVE-2025-54988. However, this CVE expands the scope of affected packages in two ways. First, while the entrypoint for the vulnerability was the tika-parser-pdf-module as reported in CVE-2025-54988, the vulnerability and its fix were in tika-core. Users who upgraded the tika-parser-pdf-module but did not upgrade tika-core to >= 3.2.2 would still be vulnerable. Second, the original report failed to mention that in the 1.x Tika releases, the PDFParser was in the "org.apache.tika:tika-parsers" module.

0.0% 2025-12-04
4.8 MEDIUM

Akamai Ghost on Akamai CDN edge servers before 2025-11-17 has a chunked request body processing error that can result in HTTP request smuggling. When Akamai Ghost receives an invalid chunked body that includes a chunk size different from the actual size of the following chunk data, under certain circumstances, Akamai Ghost erroneously forwards the invalid request and subsequent superfluous bytes to the origin server. An attacker could hide a smuggled request in these superfluous bytes. Whether this is exploitable depends on the origin server's behavior and how it processes the invalid request it receives from Akamai Ghost.

0.0% 2025-12-04
8.8 HIGH

A flaw was found in WebKitGTK. Processing malicious web content can cause an unexpected process crash due to improper memory handling.

0.1% 2025-12-04
7.5 HIGH

Waveshare RS232/485 TO WIFI ETH (B) Serial to Ethernet/Wi-Fi Gateway Firmware V3.1.1.0: HW 4.3.2.1: Webpage V7.04T.07.002880.0301 was discovered to transmit Administrator credentials in plaintext.

0.0% 2025-12-04
5.6 MEDIUM

Origin validation error vulnerability in BeeDrive in Synology BeeDrive for desktop before 1.4.3-13973 allows local users to write arbitrary files with non-sensitive information via unspecified vectors.

0.0% 2025-12-04
6.1 MEDIUM

A stored cross-site scripting (XSS) vulnerability was discovered in Seafile Community Edition prior to version 13.0.12. When Seafile is configured with the Golang file server, an attacker can upload a crafted SVG file containing malicious JavaScript and share it using a public link. Opening the link triggers script execution in the victim's browser. This issue has been fixed in Seafile Community Edition 13.0.12.

0.0% 2025-12-04
4.3 MEDIUM

open-webui v0.6.33 is vulnerable to Incorrect Access Control. The API /api/tasks/stop/ directly accesses and cancels tasks without verifying user ownership, enabling attackers (a normal user) to stop arbitrary LLM response tasks.

0.0% 2025-12-04
6.5 MEDIUM

An Insecure Direct Object Reference (IDOR) vulnerability in the EduplusCampus 3.0.1 Student Payment API allows authenticated users to access other students personal and financial records by modifying the 'rec_no' parameter in the /student/get-receipt endpoint.

0.0% 2025-12-04
7.5 HIGH

Incorrect access control in the component orderService.queryObject of platform v1.0.0 allows attackers to access sensitive information via a crafted request.

0.0% 2025-12-04
7.5 HIGH

Incorrect access control in the component ApiOrderService.java of platform v1.0.0 allows attackers to access sensitive information via a crafted request.

0.0% 2025-12-04
7.5 HIGH

Incorrect access control in the component ApiPayController.java of platform v1.0.0 allows attackers to access sensitive information via unspecified vectors.

0.0% 2025-12-04
7.5 HIGH

Directory Traversal vulnerability in ComposioHQ v.0.7.20 allows a remote attacker to obtain sensitive information via the _download_file_or_dir function.

1.1% 2025-12-04
7.8 HIGH

Improper limitation of a pathname to a restricted directory ('Path Traversal') vulnerability in BeeDrive in Synology BeeDrive for desktop before 1.4.2-13960 allows local users to execute arbitrary code via unspecified vectors.

0.0% 2025-12-04
7.5 HIGH

Missing authorization vulnerability in BeeDrive in Synology BeeDrive for desktop before 1.4.2-13960 allows remote attackers to delete arbitrary files via unspecified vectors.

0.1% 2025-12-04
7.8 HIGH

Missing authentication for critical function vulnerability in BeeDrive in Synology BeeDrive for desktop before 1.4.2-13960 allows local users to execute arbitrary code via unspecified vectors.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Check the untrusted offset in FF-A memory share Verify the offset to prevent OOB access in the hypervisor FF-A buffer in case an untrusted large enough value [U32_MAX - sizeof(struct ffa_composite_mem_region) + 1, U32_MAX] is set from the host kernel.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: vfat: fix missing sb_min_blocksize() return value checks When emulating an nvme device on qemu with both logical_block_size and physical_block_size set to 8 KiB, but without format, a kernel panic was triggered during the early boot stage while attempting to mount a vfat filesystem. [95553.682035] EXT4-fs (nvme0n1): unable to set blocksize [95553.684326] EXT4-fs (nvme0n1): unable to set blocksize [95553.686501] EXT4-fs (nvme0n1): unable to set blocksize [95553.696448] ISOFS: unsupported/invalid hardware sector size 8192 [95553.697117] ------------[ cut here ]------------ [95553.697567] kernel BUG at fs/buffer.c:1582! [95553.697984] Oops: invalid opcode: 0000 [#1] SMP NOPTI [95553.698602] CPU: 0 UID: 0 PID: 7212 Comm: mount Kdump: loaded Not tainted 6.18.0-rc2+ #38 PREEMPT(voluntary) [95553.699511] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [95553.700534] RIP: 0010:folio_alloc_buffers+0x1bb/0x1c0 [95553.701018] Code: 48 8b 15 e8 93 18 02 65 48 89 35 e0 93 18 02 48 83 c4 10 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff c3 cc cc cc cc <0f> 0b 90 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f [95553.702648] RSP: 0018:ffffd1b0c676f990 EFLAGS: 00010246 [95553.703132] RAX: ffff8cfc4176d820 RBX: 0000000000508c48 RCX: 0000000000000001 [95553.703805] RDX: 0000000000002000 RSI: 0000000000000000 RDI: 0000000000000000 [95553.704481] RBP: ffffd1b0c676f9c8 R08: 0000000000000000 R09: 0000000000000000 [95553.705148] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 [95553.705816] R13: 0000000000002000 R14: fffff8bc8257e800 R15: 0000000000000000 [95553.706483] FS: 000072ee77315840(0000) GS:ffff8cfdd2c8d000(0000) knlGS:0000000000000000 [95553.707248] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [95553.707782] CR2: 00007d8f2a9e5a20 CR3: 0000000039d0c006 CR4: 0000000000772ef0 [95553.708439] PKRU: 55555554 [95553.708734] Call Trace: [95553.709015] <TASK> [95553.709266] __getblk_slow+0xd2/0x230 [95553.709641] ? find_get_block_common+0x8b/0x530 [95553.710084] bdev_getblk+0x77/0xa0 [95553.710449] __bread_gfp+0x22/0x140 [95553.710810] fat_fill_super+0x23a/0xfc0 [95553.711216] ? __pfx_setup+0x10/0x10 [95553.711580] ? __pfx_vfat_fill_super+0x10/0x10 [95553.712014] vfat_fill_super+0x15/0x30 [95553.712401] get_tree_bdev_flags+0x141/0x1e0 [95553.712817] get_tree_bdev+0x10/0x20 [95553.713177] vfat_get_tree+0x15/0x20 [95553.713550] vfs_get_tree+0x2a/0x100 [95553.713910] vfs_cmd_create+0x62/0xf0 [95553.714273] __do_sys_fsconfig+0x4e7/0x660 [95553.714669] __x64_sys_fsconfig+0x20/0x40 [95553.715062] x64_sys_call+0x21ee/0x26a0 [95553.715453] do_syscall_64+0x80/0x670 [95553.715816] ? __fs_parse+0x65/0x1e0 [95553.716172] ? fat_parse_param+0x103/0x4b0 [95553.716587] ? vfs_parse_fs_param_source+0x21/0xa0 [95553.717034] ? __do_sys_fsconfig+0x3d9/0x660 [95553.717548] ? __x64_sys_fsconfig+0x20/0x40 [95553.717957] ? x64_sys_call+0x21ee/0x26a0 [95553.718360] ? do_syscall_64+0xb8/0x670 [95553.718734] ? __x64_sys_fsconfig+0x20/0x40 [95553.719141] ? x64_sys_call+0x21ee/0x26a0 [95553.719545] ? do_syscall_64+0xb8/0x670 [95553.719922] ? x64_sys_call+0x1405/0x26a0 [95553.720317] ? do_syscall_64+0xb8/0x670 [95553.720702] ? __x64_sys_close+0x3e/0x90 [95553.721080] ? x64_sys_call+0x1b5e/0x26a0 [95553.721478] ? do_syscall_64+0xb8/0x670 [95553.721841] ? irqentry_exit+0x43/0x50 [95553.722211] ? exc_page_fault+0x90/0x1b0 [95553.722681] entry_SYSCALL_64_after_hwframe+0x76/0x7e [95553.723166] RIP: 0033:0x72ee774f3afe [95553.723562] Code: 73 01 c3 48 8b 0d 0a 33 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 49 89 ca b8 af 01 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d da 32 0f 00 f7 d8 64 89 01 48 [95553.725188] RSP: 002b:00007ffe97148978 EFLAGS: 00000246 ORIG_RAX: 00000000000001af [95553.725892] RAX: ffffffffffffffda RBX: ---truncated---

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: be2net: pass wrb_params in case of OS2BMC be_insert_vlan_in_pkt() is called with the wrb_params argument being NULL at be_send_pkt_to_bmc() call site.  This may lead to dereferencing a NULL pointer when processing a workaround for specific packet, as commit bc0c3405abbb ("be2net: fix a Tx stall bug caused by a specific ipv6 packet") states. The correct way would be to pass the wrb_params from be_xmit().

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: Input: cros_ec_keyb - fix an invalid memory access If cros_ec_keyb_register_matrix() isn't called (due to `buttons_switches_only`) in cros_ec_keyb_probe(), `ckdev->idev` remains NULL. An invalid memory access is observed in cros_ec_keyb_process() when receiving an EC_MKBP_EVENT_KEY_MATRIX event in cros_ec_keyb_work() in such case. Unable to handle kernel read from unreadable memory at virtual address 0000000000000028 ... x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: input_event cros_ec_keyb_work blocking_notifier_call_chain ec_irq_thread It's still unknown about why the kernel receives such malformed event, in any cases, the kernel shouldn't access `ckdev->idev` and friends if the driver doesn't intend to initialize them.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: Input: imx_sc_key - fix memory corruption on unload This is supposed to be "priv" but we accidentally pass "&priv" which is an address in the stack and so it will lead to memory corruption when the imx_sc_key_action() function is called. Remove the &.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: nvme: nvme-fc: Ensure ->ioerr_work is cancelled in nvme_fc_delete_ctrl() nvme_fc_delete_assocation() waits for pending I/O to complete before returning, and an error can cause ->ioerr_work to be queued after cancel_work_sync() had been called. Move the call to cancel_work_sync() to be after nvme_fc_delete_association() to ensure ->ioerr_work is not running when the nvme_fc_ctrl object is freed. Otherwise the following can occur: [ 1135.911754] list_del corruption, ff2d24c8093f31f8->next is NULL [ 1135.917705] ------------[ cut here ]------------ [ 1135.922336] kernel BUG at lib/list_debug.c:52! [ 1135.926784] Oops: invalid opcode: 0000 [#1] SMP NOPTI [ 1135.931851] CPU: 48 UID: 0 PID: 726 Comm: kworker/u449:23 Kdump: loaded Not tainted 6.12.0 #1 PREEMPT(voluntary) [ 1135.943490] Hardware name: Dell Inc. PowerEdge R660/0HGTK9, BIOS 2.5.4 01/16/2025 [ 1135.950969] Workqueue: 0x0 (nvme-wq) [ 1135.954673] RIP: 0010:__list_del_entry_valid_or_report.cold+0xf/0x6f [ 1135.961041] Code: c7 c7 98 68 72 94 e8 26 45 fe ff 0f 0b 48 c7 c7 70 68 72 94 e8 18 45 fe ff 0f 0b 48 89 fe 48 c7 c7 80 69 72 94 e8 07 45 fe ff <0f> 0b 48 89 d1 48 c7 c7 a0 6a 72 94 48 89 c2 e8 f3 44 fe ff 0f 0b [ 1135.979788] RSP: 0018:ff579b19482d3e50 EFLAGS: 00010046 [ 1135.985015] RAX: 0000000000000033 RBX: ff2d24c8093f31f0 RCX: 0000000000000000 [ 1135.992148] RDX: 0000000000000000 RSI: ff2d24d6bfa1d0c0 RDI: ff2d24d6bfa1d0c0 [ 1135.999278] RBP: ff2d24c8093f31f8 R08: 0000000000000000 R09: ffffffff951e2b08 [ 1136.006413] R10: ffffffff95122ac8 R11: 0000000000000003 R12: ff2d24c78697c100 [ 1136.013546] R13: fffffffffffffff8 R14: 0000000000000000 R15: ff2d24c78697c0c0 [ 1136.020677] FS: 0000000000000000(0000) GS:ff2d24d6bfa00000(0000) knlGS:0000000000000000 [ 1136.028765] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1136.034510] CR2: 00007fd207f90b80 CR3: 000000163ea22003 CR4: 0000000000f73ef0 [ 1136.041641] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1136.048776] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [ 1136.055910] PKRU: 55555554 [ 1136.058623] Call Trace: [ 1136.061074] <TASK> [ 1136.063179] ? show_trace_log_lvl+0x1b0/0x2f0 [ 1136.067540] ? show_trace_log_lvl+0x1b0/0x2f0 [ 1136.071898] ? move_linked_works+0x4a/0xa0 [ 1136.075998] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.081744] ? __die_body.cold+0x8/0x12 [ 1136.085584] ? die+0x2e/0x50 [ 1136.088469] ? do_trap+0xca/0x110 [ 1136.091789] ? do_error_trap+0x65/0x80 [ 1136.095543] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.101289] ? exc_invalid_op+0x50/0x70 [ 1136.105127] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.110874] ? asm_exc_invalid_op+0x1a/0x20 [ 1136.115059] ? __list_del_entry_valid_or_report.cold+0xf/0x6f [ 1136.120806] move_linked_works+0x4a/0xa0 [ 1136.124733] worker_thread+0x216/0x3a0 [ 1136.128485] ? __pfx_worker_thread+0x10/0x10 [ 1136.132758] kthread+0xfa/0x240 [ 1136.135904] ? __pfx_kthread+0x10/0x10 [ 1136.139657] ret_from_fork+0x31/0x50 [ 1136.143236] ? __pfx_kthread+0x10/0x10 [ 1136.146988] ret_from_fork_asm+0x1a/0x30 [ 1136.150915] </TASK>

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: sched_ext: Fix scx_enable() crash on helper kthread creation failure A crash was observed when the sched_ext selftests runner was terminated with Ctrl+\ while test 15 was running: NIP [c00000000028fa58] scx_enable.constprop.0+0x358/0x12b0 LR [c00000000028fa2c] scx_enable.constprop.0+0x32c/0x12b0 Call Trace: scx_enable.constprop.0+0x32c/0x12b0 (unreliable) bpf_struct_ops_link_create+0x18c/0x22c __sys_bpf+0x23f8/0x3044 sys_bpf+0x2c/0x6c system_call_exception+0x124/0x320 system_call_vectored_common+0x15c/0x2ec kthread_run_worker() returns an ERR_PTR() on failure rather than NULL, but the current code in scx_alloc_and_add_sched() only checks for a NULL helper. Incase of failure on SIGQUIT, the error is not handled in scx_alloc_and_add_sched() and scx_enable() ends up dereferencing an error pointer. Error handling is fixed in scx_alloc_and_add_sched() to propagate PTR_ERR() into ret, so that scx_enable() jumps to the existing error path, avoiding random dereference on failure.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: scsi: sg: Do not sleep in atomic context sg_finish_rem_req() calls blk_rq_unmap_user(). The latter function may sleep. Hence, call sg_finish_rem_req() with interrupts enabled instead of disabled.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: mptcp: fix race condition in mptcp_schedule_work() syzbot reported use-after-free in mptcp_schedule_work() [1] Issue here is that mptcp_schedule_work() schedules a work, then gets a refcount on sk->sk_refcnt if the work was scheduled. This refcount will be released by mptcp_worker(). [A] if (schedule_work(...)) { [B] sock_hold(sk); return true; } Problem is that mptcp_worker() can run immediately and complete before [B] We need instead : sock_hold(sk); if (schedule_work(...)) return true; sock_put(sk); [1] refcount_t: addition on 0; use-after-free. WARNING: CPU: 1 PID: 29 at lib/refcount.c:25 refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:25 Call Trace: <TASK> __refcount_add include/linux/refcount.h:-1 [inline] __refcount_inc include/linux/refcount.h:366 [inline] refcount_inc include/linux/refcount.h:383 [inline] sock_hold include/net/sock.h:816 [inline] mptcp_schedule_work+0x164/0x1a0 net/mptcp/protocol.c:943 mptcp_tout_timer+0x21/0xa0 net/mptcp/protocol.c:2316 call_timer_fn+0x17e/0x5f0 kernel/time/timer.c:1747 expire_timers kernel/time/timer.c:1798 [inline] __run_timers kernel/time/timer.c:2372 [inline] __run_timer_base+0x648/0x970 kernel/time/timer.c:2384 run_timer_base kernel/time/timer.c:2393 [inline] run_timer_softirq+0xb7/0x180 kernel/time/timer.c:2403 handle_softirqs+0x22f/0x710 kernel/softirq.c:622 __do_softirq kernel/softirq.c:656 [inline] run_ktimerd+0xcf/0x190 kernel/softirq.c:1138 smpboot_thread_fn+0x542/0xa60 kernel/smpboot.c:160 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: mptcp: fix a race in mptcp_pm_del_add_timer() mptcp_pm_del_add_timer() can call sk_stop_timer_sync(sk, &entry->add_timer) while another might have free entry already, as reported by syzbot. Add RCU protection to fix this issue. Also change confusing add_timer variable with stop_timer boolean. syzbot report: BUG: KASAN: slab-use-after-free in __timer_delete_sync+0x372/0x3f0 kernel/time/timer.c:1616 Read of size 4 at addr ffff8880311e4150 by task kworker/1:1/44 CPU: 1 UID: 0 PID: 44 Comm: kworker/1:1 Not tainted syzkaller #0 PREEMPT_{RT,(full)} Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025 Workqueue: events mptcp_worker Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 __timer_delete_sync+0x372/0x3f0 kernel/time/timer.c:1616 sk_stop_timer_sync+0x1b/0x90 net/core/sock.c:3631 mptcp_pm_del_add_timer+0x283/0x310 net/mptcp/pm.c:362 mptcp_incoming_options+0x1357/0x1f60 net/mptcp/options.c:1174 tcp_data_queue+0xca/0x6450 net/ipv4/tcp_input.c:5361 tcp_rcv_established+0x1335/0x2670 net/ipv4/tcp_input.c:6441 tcp_v4_do_rcv+0x98b/0xbf0 net/ipv4/tcp_ipv4.c:1931 tcp_v4_rcv+0x252a/0x2dc0 net/ipv4/tcp_ipv4.c:2374 ip_protocol_deliver_rcu+0x221/0x440 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x3bb/0x6f0 net/ipv4/ip_input.c:239 NF_HOOK+0x30c/0x3a0 include/linux/netfilter.h:318 NF_HOOK+0x30c/0x3a0 include/linux/netfilter.h:318 __netif_receive_skb_one_core net/core/dev.c:6079 [inline] __netif_receive_skb+0x143/0x380 net/core/dev.c:6192 process_backlog+0x31e/0x900 net/core/dev.c:6544 __napi_poll+0xb6/0x540 net/core/dev.c:7594 napi_poll net/core/dev.c:7657 [inline] net_rx_action+0x5f7/0xda0 net/core/dev.c:7784 handle_softirqs+0x22f/0x710 kernel/softirq.c:622 __do_softirq kernel/softirq.c:656 [inline] __local_bh_enable_ip+0x1a0/0x2e0 kernel/softirq.c:302 mptcp_pm_send_ack net/mptcp/pm.c:210 [inline] mptcp_pm_addr_send_ack+0x41f/0x500 net/mptcp/pm.c:-1 mptcp_pm_worker+0x174/0x320 net/mptcp/pm.c:1002 mptcp_worker+0xd5/0x1170 net/mptcp/protocol.c:2762 process_one_work kernel/workqueue.c:3263 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3346 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3427 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 44: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:400 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:417 kasan_kmalloc include/linux/kasan.h:262 [inline] __kmalloc_cache_noprof+0x1ef/0x6c0 mm/slub.c:5748 kmalloc_noprof include/linux/slab.h:957 [inline] mptcp_pm_alloc_anno_list+0x104/0x460 net/mptcp/pm.c:385 mptcp_pm_create_subflow_or_signal_addr+0xf9d/0x1360 net/mptcp/pm_kernel.c:355 mptcp_pm_nl_fully_established net/mptcp/pm_kernel.c:409 [inline] __mptcp_pm_kernel_worker+0x417/0x1ef0 net/mptcp/pm_kernel.c:1529 mptcp_pm_worker+0x1ee/0x320 net/mptcp/pm.c:1008 mptcp_worker+0xd5/0x1170 net/mptcp/protocol.c:2762 process_one_work kernel/workqueue.c:3263 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3346 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3427 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 Freed by task 6630: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 __kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:587 kasan_save_free_info mm/kasan/kasan.h:406 [inline] poison_slab_object m ---truncated---

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: xfrm: also call xfrm_state_delete_tunnel at destroy time for states that were never added In commit b441cf3f8c4b ("xfrm: delete x->tunnel as we delete x"), I missed the case where state creation fails between full initialization (->init_state has been called) and being inserted on the lists. In this situation, ->init_state has been called, so for IPcomp tunnels, the fallback tunnel has been created and added onto the lists, but the user state never gets added, because we fail before that. The user state doesn't go through __xfrm_state_delete, so we don't call xfrm_state_delete_tunnel for those states, and we end up leaking the FB tunnel. There are several codepaths affected by this: the add/update paths, in both net/key and xfrm, and the migrate code (xfrm_migrate, xfrm_state_migrate). A "proper" rollback of the init_state work would probably be doable in the add/update code, but for migrate it gets more complicated as multiple states may be involved. At some point, the new (not-inserted) state will be destroyed, so call xfrm_state_delete_tunnel during xfrm_state_gc_destroy. Most states will have their fallback tunnel cleaned up during __xfrm_state_delete, which solves the issue that b441cf3f8c4b (and other patches before it) aimed at. All states (including FB tunnels) will be removed from the lists once xfrm_state_fini has called flush_work(&xfrm_state_gc_work).

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: net: core: prevent NULL deref in generic_hwtstamp_ioctl_lower() The ethtool tsconfig Netlink path can trigger a null pointer dereference. A call chain such as: tsconfig_prepare_data() -> dev_get_hwtstamp_phylib() -> vlan_hwtstamp_get() -> generic_hwtstamp_get_lower() -> generic_hwtstamp_ioctl_lower() results in generic_hwtstamp_ioctl_lower() being called with kernel_cfg->ifr as NULL. The generic_hwtstamp_ioctl_lower() function does not expect a NULL ifr and dereferences it, leading to a system crash. Fix this by adding a NULL check for kernel_cfg->ifr in generic_hwtstamp_ioctl_lower(). If ifr is NULL, return -EINVAL.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: remove never-working support for setting nsh fields The validation of the set(nsh(...)) action is completely wrong. It runs through the nsh_key_put_from_nlattr() function that is the same function that validates NSH keys for the flow match and the push_nsh() action. However, the set(nsh(...)) has a very different memory layout. Nested attributes in there are doubled in size in case of the masked set(). That makes proper validation impossible. There is also confusion in the code between the 'masked' flag, that says that the nested attributes are doubled in size containing both the value and the mask, and the 'is_mask' that says that the value we're parsing is the mask. This is causing kernel crash on trying to write into mask part of the match with SW_FLOW_KEY_PUT() during validation, while validate_nsh() doesn't allocate any memory for it: BUG: kernel NULL pointer dereference, address: 0000000000000018 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 1c2383067 P4D 1c2383067 PUD 20b703067 PMD 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 8 UID: 0 Kdump: loaded Not tainted 6.17.0-rc4+ #107 PREEMPT(voluntary) RIP: 0010:nsh_key_put_from_nlattr+0x19d/0x610 [openvswitch] Call Trace: <TASK> validate_nsh+0x60/0x90 [openvswitch] validate_set.constprop.0+0x270/0x3c0 [openvswitch] __ovs_nla_copy_actions+0x477/0x860 [openvswitch] ovs_nla_copy_actions+0x8d/0x100 [openvswitch] ovs_packet_cmd_execute+0x1cc/0x310 [openvswitch] genl_family_rcv_msg_doit+0xdb/0x130 genl_family_rcv_msg+0x14b/0x220 genl_rcv_msg+0x47/0xa0 netlink_rcv_skb+0x53/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x280/0x3b0 netlink_sendmsg+0x1f7/0x430 ____sys_sendmsg+0x36b/0x3a0 ___sys_sendmsg+0x87/0xd0 __sys_sendmsg+0x6d/0xd0 do_syscall_64+0x7b/0x2c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e The third issue with this process is that while trying to convert the non-masked set into masked one, validate_set() copies and doubles the size of the OVS_KEY_ATTR_NSH as if it didn't have any nested attributes. It should be copying each nested attribute and doubling them in size independently. And the process must be properly reversed during the conversion back from masked to a non-masked variant during the flow dump. In the end, the only two outcomes of trying to use this action are either validation failure or a kernel crash. And if somehow someone manages to install a flow with such an action, it will most definitely not do what it is supposed to, since all the keys and the masks are mixed up. Fixing all the issues is a complex task as it requires re-writing most of the validation code. Given that and the fact that this functionality never worked since introduction, let's just remove it altogether. It's better to re-introduce it later with a proper implementation instead of trying to fix it in stable releases.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: s390/ctcm: Fix double-kfree The function 'mpc_rcvd_sweep_req(mpcginfo)' is called conditionally from function 'ctcmpc_unpack_skb'. It frees passed mpcginfo. After that a call to function 'kfree' in function 'ctcmpc_unpack_skb' frees it again. Remove 'kfree' call in function 'mpc_rcvd_sweep_req(mpcginfo)'. Bug detected by the clang static analyzer.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: net: qlogic/qede: fix potential out-of-bounds read in qede_tpa_cont() and qede_tpa_end() The loops in 'qede_tpa_cont()' and 'qede_tpa_end()', iterate over 'cqe->len_list[]' using only a zero-length terminator as the stopping condition. If the terminator was missing or malformed, the loop could run past the end of the fixed-size array. Add an explicit bound check using ARRAY_SIZE() in both loops to prevent a potential out-of-bounds access. Found by Linux Verification Center (linuxtesting.org) with SVACE.

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: devlink: rate: Unset parent pointer in devl_rate_nodes_destroy The function devl_rate_nodes_destroy is documented to "Unset parent for all rate objects". However, it was only calling the driver-specific `rate_leaf_parent_set` or `rate_node_parent_set` ops and decrementing the parent's refcount, without actually setting the `devlink_rate->parent` pointer to NULL. This leaves a dangling pointer in the `devlink_rate` struct, which cause refcount error in netdevsim[1] and mlx5[2]. In addition, this is inconsistent with the behavior of `devlink_nl_rate_parent_node_set`, where the parent pointer is correctly cleared. This patch fixes the issue by explicitly setting `devlink_rate->parent` to NULL after notifying the driver, thus fulfilling the function's documented behavior for all rate objects. [1] repro steps: echo 1 > /sys/bus/netdevsim/new_device devlink dev eswitch set netdevsim/netdevsim1 mode switchdev echo 1 > /sys/bus/netdevsim/devices/netdevsim1/sriov_numvfs devlink port function rate add netdevsim/netdevsim1/test_node devlink port function rate set netdevsim/netdevsim1/128 parent test_node echo 1 > /sys/bus/netdevsim/del_device dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 8 PID: 1530 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 8 UID: 0 PID: 1530 Comm: bash Not tainted 6.18.0-rc4+ #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 __nsim_dev_port_del+0x6c/0x70 [netdevsim] nsim_dev_reload_destroy+0x11c/0x140 [netdevsim] nsim_drv_remove+0x2b/0xb0 [netdevsim] device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 device_unregister+0x1a/0x60 del_device_store+0x111/0x170 [netdevsim] kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x55/0x10f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [2] devlink dev eswitch set pci/0000:08:00.0 mode switchdev devlink port add pci/0000:08:00.0 flavour pcisf pfnum 0 sfnum 1000 devlink port function rate add pci/0000:08:00.0/group1 devlink port function rate set pci/0000:08:00.0/32768 parent group1 modprobe -r mlx5_ib mlx5_fwctl mlx5_core dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 7 PID: 16151 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 7 UID: 0 PID: 16151 Comm: bash Not tainted 6.17.0-rc7_for_upstream_min_debug_2025_10_02_12_44 #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 mlx5_esw_offloads_devlink_port_unregister+0x33/0x60 [mlx5_core] mlx5_esw_offloads_unload_rep+0x3f/0x50 [mlx5_core] mlx5_eswitch_unload_sf_vport+0x40/0x90 [mlx5_core] mlx5_sf_esw_event+0xc4/0x120 [mlx5_core] notifier_call_chain+0x33/0xa0 blocking_notifier_call_chain+0x3b/0x50 mlx5_eswitch_disable_locked+0x50/0x110 [mlx5_core] mlx5_eswitch_disable+0x63/0x90 [mlx5_core] mlx5_unload+0x1d/0x170 [mlx5_core] mlx5_uninit_one+0xa2/0x130 [mlx5_core] remove_one+0x78/0xd0 [mlx5_core] pci_device_remove+0x39/0xa0 device_release_driver_internal+0x194/0x1f0 unbind_store+0x99/0xa0 kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x53/0x1f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Clean up only new IRQ glue on request_irq() failure The mlx5_irq_alloc() function can inadvertently free the entire rmap and end up in a crash[1] when the other threads tries to access this, when request_irq() fails due to exhausted IRQ vectors. This commit modifies the cleanup to remove only the specific IRQ mapping that was just added. This prevents removal of other valid mappings and ensures precise cleanup of the failed IRQ allocation's associated glue object. Note: This error is observed when both fwctl and rds configs are enabled. [1] mlx5_core 0000:05:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:05:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:06:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:06:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:06:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:03:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 general protection fault, probably for non-canonical address 0xe277a58fde16f291: 0000 [#1] SMP NOPTI RIP: 0010:free_irq_cpu_rmap+0x23/0x7d Call Trace: <TASK> ? show_trace_log_lvl+0x1d6/0x2f9 ? show_trace_log_lvl+0x1d6/0x2f9 ? mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] ? __die_body.cold+0x8/0xa ? die_addr+0x39/0x53 ? exc_general_protection+0x1c4/0x3e9 ? dev_vprintk_emit+0x5f/0x90 ? asm_exc_general_protection+0x22/0x27 ? free_irq_cpu_rmap+0x23/0x7d mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] irq_pool_request_vector+0x7d/0x90 [mlx5_core] mlx5_irq_request+0x2e/0xe0 [mlx5_core] mlx5_irq_request_vector+0xad/0xf7 [mlx5_core] comp_irq_request_pci+0x64/0xf0 [mlx5_core] create_comp_eq+0x71/0x385 [mlx5_core] ? mlx5e_open_xdpsq+0x11c/0x230 [mlx5_core] mlx5_comp_eqn_get+0x72/0x90 [mlx5_core] ? xas_load+0x8/0x91 mlx5_comp_irqn_get+0x40/0x90 [mlx5_core] mlx5e_open_channel+0x7d/0x3c7 [mlx5_core] mlx5e_open_channels+0xad/0x250 [mlx5_core] mlx5e_open_locked+0x3e/0x110 [mlx5_core] mlx5e_open+0x23/0x70 [mlx5_core] __dev_open+0xf1/0x1a5 __dev_change_flags+0x1e1/0x249 dev_change_flags+0x21/0x5c do_setlink+0x28b/0xcc4 ? __nla_parse+0x22/0x3d ? inet6_validate_link_af+0x6b/0x108 ? cpumask_next+0x1f/0x35 ? __snmp6_fill_stats64.constprop.0+0x66/0x107 ? __nla_validate_parse+0x48/0x1e6 __rtnl_newlink+0x5ff/0xa57 ? kmem_cache_alloc_trace+0x164/0x2ce rtnl_newlink+0x44/0x6e rtnetlink_rcv_msg+0x2bb/0x362 ? __netlink_sendskb+0x4c/0x6c ? netlink_unicast+0x28f/0x2ce ? rtnl_calcit.isra.0+0x150/0x146 netlink_rcv_skb+0x5f/0x112 netlink_unicast+0x213/0x2ce netlink_sendmsg+0x24f/0x4d9 __sock_sendmsg+0x65/0x6a ____sys_sendmsg+0x28f/0x2c9 ? import_iovec+0x17/0x2b ___sys_sendmsg+0x97/0xe0 __sys_sendmsg+0x81/0xd8 do_syscall_64+0x35/0x87 entry_SYSCALL_64_after_hwframe+0x6e/0x0 RIP: 0033:0x7fc328603727 Code: c3 66 90 41 54 41 89 d4 55 48 89 f5 53 89 fb 48 83 ec 10 e8 0b ed ff ff 44 89 e2 48 89 ee 89 df 41 89 c0 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 48 89 44 24 08 e8 44 ed ff ff 48 RSP: 002b:00007ffe8eb3f1a0 EFLAGS: 00000293 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fc328603727 RDX: 0000000000000000 RSI: 00007ffe8eb3f1f0 RDI: 000000000000000d RBP: 00007ffe8eb3f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 R13: 00000000000 ---truncated---

0.0% 2025-12-04
N/A

In the Linux kernel, the following vulnerability has been resolved: gpio: cdev: make sure the cdev fd is still active before emitting events With the final call to fput() on a file descriptor, the release action may be deferred and scheduled on a work queue. The reference count of that descriptor is still zero and it must not be used. It's possible that a GPIO change, we want to notify the user-space about, happens AFTER the reference count on the file descriptor associated with the character device went down to zero but BEFORE the .release() callback was called from the workqueue and so BEFORE we unregistered from the notifier. Using the regular get_file() routine in this situation triggers the following warning: struct file::f_count incremented from zero; use-after-free condition present! So use the get_file_active() variant that will return NULL on file descriptors that have been or are being released.

0.0% 2025-12-04